matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNormale Untergruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Normale Untergruppe
Normale Untergruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale Untergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 23.11.2005
Autor: dauwer

Ich muss folgede Aufgabe lösen und weiss nicht genau wie ich das Ganze angehen soll.


Zeigen Sie, dass $(<(123)>, [mm] \circ)$ [/mm] eine normale Untergruppe der Gruppe [mm] $(S_{3}, \circ)$ [/mm] ist.


Um zu beweisen, dass $(<(123)>, [mm] \circ)$ [/mm] eine normale Untergruppe ist, muss man ja erst zeigen, dass $(<(123)>, [mm] \circ)$ [/mm] überhaupt eine Untergruppe ist und zusätzlich noch [mm] $\forall [/mm] x [mm] \in S_{3}, \forall [/mm] h [mm] \in [/mm] <123>$ gilt $x [mm] \circ [/mm] h [mm] \circ [/mm] \ [mm] x^{-1} \in [/mm] <123>$. Richtig?
Das Problem ist nur, dass ich nicht weiss wie ich sowas beweisen soll.

Grüsse, Dauwer

Ich habe diese Frage in keinem anderen Forum auf anderen Webseiten gestellt.

        
Bezug
Normale Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Do 24.11.2005
Autor: angela.h.b.


>
> Zeigen Sie, dass [mm](<(123)>, \circ)[/mm] eine normale Untergruppe
> der Gruppe [mm](S_{3}, \circ)[/mm] ist.
>  
>
> Um zu beweisen, dass [mm]( <(123)>, \circ)[/mm] eine normale
> Untergruppe ist, muss man ja erst zeigen, dass [mm](<(123)>, \circ)[/mm]
> überhaupt eine Untergruppe ist

Weißt Du, was alles in <(123)> drin ist?
Weißt Du, was eine Untergruppe ist?
Falls ja, dürfte dieser Nachweis kein Problem sein.

und zusätzlich noch [mm]\forall x \in S_{3}, \forall h \in <123>[/mm]

> gilt [mm]x \circ h \circ \ x^{-1} \in <123>[/mm]. Richtig?

Ja. Es sind doch  [mm] S_3 [/mm] und <(123)> beide dermaßen übersichtlich, daß Du das einfach Element für Element prüfen kannst.

Gruß v. Angela

>  Das Problem ist nur, dass ich nicht weiss wie ich sowas
> beweisen soll.
>  
> Grüsse, Dauwer
>  
> Ich habe diese Frage in keinem anderen Forum auf anderen
> Webseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]