matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungNormal/Binomial/Poissonvert.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Normal/Binomial/Poissonvert.
Normal/Binomial/Poissonvert. < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normal/Binomial/Poissonvert.: Verschiedene Fragen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:52 Di 06.11.2007
Autor: oli_k

Hallo,
habe vier Verständnisfragen zu Aufgaben aus dem Unterricht... Ihr könnt ja auch nach und nach antworten :)

Die erste:
Aufgabe: "Kakaofrüchte haben durchschnittlich 40 Samen. Die Samen sind normalverteilt mit [mm] \sigma=5. [/mm] Mit welcher Ws. enthält eine zufällig ausgewählte Kakaofrucht weniger als 38 Samen?"
Nun muss die Frucht ja 37 Samen oder weniger haben. Mit der Normalverteilung vor Augen habe ich nun mit Stetigkeitskorrektur [mm] P(X\le37,5) [/mm] berechnet, da die Natur sich bei 37,4 ja auch noch für 37 Samen "entscheidet". Das höärt sich zwar jetzt blöd an, aber ich sehe es nicht ein, [mm] P(X\le37) [/mm] zu berechnen, da die Säule für P(X=37) in meinen Augen von 36,5 bis 37,5 läuft... Das Lösungsbuch sagt aber, man müsse [mm] P(X\le37) [/mm] berechnen. Ich frage mich nur, wie man dann die Ws. für EXAKT 37 berechnen soll? Nach diesem Weg wär die ja wohl 0, nach meinem ungleich 0...
Lehrer meinte, beides wäre richtig... Nehmen wir an, ich würde wirklich ne Million von den Früchten testen, wie groß wäre dann die PRAKTISCHE Ws.? Eine von den beiden muss ja stimmen, zwischen [mm] P(X\le37,5) [/mm] und [mm] P(X\le37) [/mm] ist ein sehr großer Unterschied!      

Die zweite:
Aufgabe: "Es werden erfahrungsgemäß 80% der Erträge verkauft. Mit welcher Ws. verkauft man 82% der angelieferten 800t?"
Da ich keine Anhaltspunkte zu der Standardabweichung oder der Anzahl oder Füllmenge von Kartons o.Ä. habe, bin ich von einer Poissonverteilung ausgegangen mit µ=0,8 und [mm] \sigma=\sqrt(0,8). [/mm] Dann habe ich [mm] P(X\ge0,82) [/mm] berechnet.
Richtig wäre gewesen, von einer Binomialverteilung auszugehen mit n=800 und p=0,8 und µ=640 und dann [mm] P(X\ge800*0,82) [/mm] zu berechnen. Warum ist das so? Das ist doch keine Aneinanderreihung von 800 Verkäufen á 1t, wobei jeder einzelne Karton mit einer Ws. von 80% verkauft wird... Dann könnte ich doch auch von 1kg-Kartons ausgehen und käme auf n=800000 mit p=0,8 und µ=640000. Da ich bei beiden mit Stetigkeitskorrektur 0,5 approximieren muss, fällt diese bei 656+0,5 viel mehr ins Gewicht als bei 656000+0,5. Demnach kommt man auf signifikant andere Ergebnisse bei beiden...
Wieso muss man also gerade so rechnen?

Die dritte:
Aufgabe: "Das Land hat im Schnitt 5 Regenstunden am Tag. Wie groß ist die Ws. für höchstens 3 Regenstunden?"
Muss man hier raten, dass der Regen poissonverteilt ist? Kann man davon ausgehen, wenn keine Standardabweichung gegeben ist?

Die vierte:
Habe eine Wertetabelle mit auf 5 gerundete Werte (X|Anzahl(X)): 240|5 245|38 250|410 255|41 260|6 sonstiges|0
µ und [mm] \sigma [/mm] zu berechnen ist ja kein Problem.
Wie kann ich nun die Verteilung bestimmen? Bin einfach von Normalverteilung ausgegangen, da [mm] \sqrt(µ) [/mm] nicht [mm] \sigma [/mm] ergab... Muss ich hier vielleicht beachten, dass die Werte gerundet sind?
Dann soll ich auf zwei Arten P(|X-µ|<5) bestimmen, zum einen nur an der Tabelle, zum anderen mit Normalverteilung.
Mit Normalverteilung ist das ja klar. Aber zur Tabelle: Ich muss ja die Werte zählen, die von 245 bis 255 reichen. Nun sind wegen der Rundung aber in der Tabelle alle Werte ab 242,5 als 245 aufgeführt, alle bis 257,5 als 255. Was muss ich hier tun? Einfach so wie ohne Rundung rechnen?


Vielen vielen Dank
Oli


        
Bezug
Normal/Binomial/Poissonvert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Mi 07.11.2007
Autor: oli_k

Hallo nochmal,
hat denn keiner auch nur auf eine der Fragen eine (von mir aus auch sehr kurze) Antwort?

Danke...
Oli

Bezug
                
Bezug
Normal/Binomial/Poissonvert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Mi 07.11.2007
Autor: luis52

Moin [mm] oli_k, [/mm]

vielleicht haettest du ja mehr Glueck, wenn du deine Frage in etwas
verdaulichere Haeppchen unterteilst, d.h. verschiedene Threads ...

lg Luis



Bezug
                        
Bezug
Normal/Binomial/Poissonvert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Mi 07.11.2007
Autor: oli_k

Na gut, dann mache ich jetzt 4 Threads auf ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]