matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenNilpotente Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Nilpotente Matrizen
Nilpotente Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 06.07.2011
Autor: imzadi

Hallo, zusammen ,
ich beschäftige mich gerade mit nilpotenten Matrizen und glaube folgende Äquivalenz bewiesen zu haben: zwei  nilpotente drei-kreuz-drei Matrizen sind genau dann ähnlich, wenn sie dengleichen Nilpotenzindex haben; bei dem Beweis habe ich die Tatsachen benutzt, dass jede nilpotente Matrix zu einer nilpotenten Normalform ähnlich ist sowie dass ähnliche Matrizen den gleichen Rang haben.
Jetzt überlege ich mir ob diese Äquivalenz auch für vier-kreuz-vier Matrizen gilt und bin der Meinung dass es genauso gilt. Ist das so oder bin ich da auf der falschen Fehrte? Für ein Tipp bin ich sehr dankbar.

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Nilpotente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Do 07.07.2011
Autor: Berieux

Hallo!

> Hallo, zusammen ,
>  ich beschäftige mich gerade mit nilpotenten Matrizen und
> glaube folgende Äquivalenz bewiesen zu haben: zwei  
> nilpotente drei-kreuz-drei Matrizen sind genau dann
> ähnlich, wenn sie dengleichen Nilpotenzindex haben; bei

Jop, das stimmt.

> dem Beweis habe ich die Tatsachen benutzt, dass jede
> nilpotente Matrix zu einer nilpotenten Normalform ähnlich
> ist sowie dass ähnliche Matrizen den gleichen Rang haben.
>  Jetzt überlege ich mir ob diese Äquivalenz auch für
> vier-kreuz-vier Matrizen gilt und bin der Meinung dass es
> genauso gilt. Ist das so oder bin ich da auf der falschen
> Fehrte? Für ein Tipp bin ich sehr dankbar.

Für 4x4 Matrizen gilt das nicht mehr. Gegenbeispiel:

[mm] \pmat{0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0} [/mm] und
[mm] \pmat{0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0} [/mm]



>  
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  

Grüße,
Berieux

Bezug
                
Bezug
Nilpotente Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:06 Do 07.07.2011
Autor: imzadi

Hallo,Berieux,
vielen Dank für deine Hilfe und gute Nacht,jetzt kann ich ruhig schlafen. :-)

Gruß,imzadi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]