matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenNilpotente Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Nilpotente Matrix
Nilpotente Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotente Matrix: Dimension, Unterraum
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 05.07.2014
Autor: YuSul

Aufgabe
Sei V ein n-dimensionaler K-Vektorraum und sei [mm] $\phi\in [/mm] End(V)$ nilpotent mit Nilpotenzgrad d. Zeigen Sie, dass gilt [mm] $d\leq [/mm] n$

Hi,

ich habe eine Frage zu der Lösung dieser Aufgabe.

Es gilt:

[mm] $\phi(v)^{d-1}\neq [/mm] 0$. Nach einem Satz aus der Vorlesung sind also die Vektoren:

$v, [mm] \phi(v), [/mm] ..., [mm] \phi^{d-1}(v)$ [/mm] linear unabhängig, und der davon erzeugte Vektorraum ein Untervektorraum von V und [mm] $\phi$-Invariant. [/mm]

[mm] $U:=\langle\{v, \phi(v), ..., \phi^{d-1}(v)\}$ [/mm]

Nun gilt

[mm] $dim(U)\leq [/mm] dim(V)$

Meine Frage ist, warum dies nun als Beweis ausreicht?
Liegt es daran, dass [mm] $U\quad \phi$-Invariant [/mm] ist?

        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 So 06.07.2014
Autor: hippias

Nein, die [mm] $\phi$-Invarianz [/mm] von $U$ ist fuer die Behauptung nicht entscheidend, sondern die Dimensionen der beteiligten Raeume.

Bezug
                
Bezug
Nilpotente Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 So 06.07.2014
Autor: YuSul

Und in wie fern liefert die Dimension der Räume hier eine Begründung, dass der Nilpotenzgrad kleiner als n sein muss?
Das leuchtet mir gerade nicht so sehr ein.

Bezug
                        
Bezug
Nilpotente Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 06.07.2014
Autor: Berieux

In V können höchstens n Vektoren linear unabhängig sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]