matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraNilpotent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Nilpotent
Nilpotent < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotent: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 08.05.2006
Autor: Arnbert

Hallo Ihr!
ich habe eine frage zu der folgenden Aufgabe:
Für n aus den natürlichen zahlen ist V der UVR
V= [mm] \summe_{i+j \le n} a_{ij}X^{i}Y^{j} [/mm] mit [mm] a_{ij} \in \IR [/mm] von [mm] \IR[X,Y] [/mm]

[mm] D_{X} [/mm] und [mm] D_{Y} [/mm] sind gegeben durch  [mm] D_{X}(P)=Y \bruch{ \partial P}{ \partial X} [/mm] und [mm] D_{Y}(P)=X \bruch{ \partial P}{ \partial Y} [/mm] , wobei das letztgenannte die parteiellen ableitungen sind.
Kann mir jetzt bitte wer zeuigen das [mm] D_{X} [/mm] und [mm] D_{Y} [/mm] nilpotent sind?
Mfg Arne
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nilpotent: wie bei normalen Polynomen
Status: (Antwort) fertig Status 
Datum: 10:48 Mo 08.05.2006
Autor: statler

Hallo Arne!

>  ich habe eine frage zu der folgenden Aufgabe:
>  Für n aus den natürlichen zahlen ist V der UVR
> V= [mm]\summe_{i+j \le n} a_{ij}X^{i}Y^{j}[/mm] mit [mm]a_{ij} \in \IR[/mm]
> von [mm]\IR[X,Y][/mm]
>  
> [mm]D_{X}[/mm] und [mm]D_{Y}[/mm] sind gegeben durch  [mm]D_{X}(P)=Y \bruch{ \partial P}{ \partial X}[/mm]
> und [mm]D_{Y}(P)=X \bruch{ \partial P}{ \partial Y}[/mm] , wobei das
> letztgenannte die parteiellen ableitungen sind.
>  Kann mir jetzt bitte wer zeuigen das [mm]D_{X}[/mm] und [mm]D_{Y}[/mm]
> nilpotent sind?

Nilpotent heißt doch in diesem Zusammenhang ganz lax, daß ich die 0-Abb. kriege, wenn ich [mm] D_{X} [/mm] (bzw. [mm] D_{Y}) [/mm] oft genug hintereinander ausführe. Aber für [mm] D_{X} [/mm] ist Y doch eine Konstante, d. h. bei jeder Anwendung von D sinkt der Grad des Polynoms in X um 1. Und so komme ich dann erst zu den Konstanten und dann zur Null.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Nilpotent: rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:11 Mo 08.05.2006
Autor: Arnbert

hey danke schon mal...
aber wie schreibe ich das denn am besten auf...ab mit dem hinschreiben bei so was immer probleme..
wäre nett wenn du mir das noch mal sagen könntest.
danke arne

Bezug
                        
Bezug
Nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 08.05.2006
Autor: felixf

Hallo Arne!

Ich denke man kann es ganz gut aufschreiben, wenn man ausnutzt, dass [mm] $\left(\frac{d}{d x}\right)^{n+1}$ [/mm] der Nulloperator ist (also alles auf 0 abbildet), und dass $y [mm] \frac{d}{d x} [/mm] f = [mm] \frac{d}{d x} [/mm] (y f)$ ist, also dass $y$ mit [mm] $\frac{d}{d x}$ [/mm] kommutiert.

Diese zwei Fakten sind recht einfach zu zeigen, und wenn du sie zusammenschmeisst bekommst du das was du zeigen willst...

LG Felix


Bezug
        
Bezug
Nilpotent: rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 08.05.2006
Autor: Arnbert

probiere da jetzt die ganze zeit dran rum aber das klappt irgendwie nicht.bekomme das nix gescheites hin.kannst du mir vielleicht kurz sagen wie das geht und wie man dann dass zusammenschmeißt dammit man hat was man  braucht?
das wäre nett, bis denn arne

Bezug
                
Bezug
Nilpotent: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 08.05.2006
Autor: felixf

Hallo Arne!

> probiere da jetzt die ganze zeit dran rum aber das klappt
> irgendwie nicht.bekomme das nix gescheites hin.kannst du
> mir vielleicht kurz sagen wie das geht und wie man dann
> dass zusammenschmeißt dammit man hat was man  braucht?
>  das wäre nett, bis denn arne

Du hast: [mm] $D_X^n(f) [/mm] = [mm] (D_X \circ D_X \circ \dots \circ D_X)(f) [/mm] = (Y [mm] \frac{\partial}{\partial X} [/mm] Y [mm] \frac{\partial}{\partial X} \dots [/mm] Y [mm] \frac{\partial}{\partial X})(f) [/mm] =  (Y [mm] \frac{\partial}{\partial X})^n [/mm] f = [mm] Y^n \frac{\partial^n}{\partial X^n} [/mm] f$, da $Y$ und [mm] $\frac{\partial}{\partial X}$ [/mm] kommutieren. Wenn du jetzt $n$ gross genug waehlst...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]