matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesNichtlineare Ausgleichsrechnun
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Nichtlineare Ausgleichsrechnun
Nichtlineare Ausgleichsrechnun < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineare Ausgleichsrechnun: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:49 Mi 23.02.2011
Autor: SeLo

Aufgabe
f(x1,x2,t) = x1*e^(-x2*t)

Startvektor x(0) =(0,6 ; 0,15)

i       1        2          3         4
ti      5       10        15       20
yi  0,303  0,184  0,112  0,0677

Bestimmung von x1 und x2

Ich habe nun einen Algorithmus aus dem Skript wo man die Funktion erst mal linearisieren  muss nach Taylor! Ich habe also die Funktion jeweils nach x1 und x2 abgeleitet und zwar die 1. und 2. Ableitung und dann noch die erste Ableitung von x1 noch nach x2 abgeleitet.

Die Ableitungen:

fx1 = e^(-x2*t)
fx2 = -x1*e^(-x2*t)*t
fx1x1 = 0
fx2x2 = [mm] x1*t^2*e^{-x2*t} [/mm]
fx1x2 = -t*e^(-x2*t)

Die Taylorreihe:

f(x1,x2) = [mm] f(x10,x20)+\bruch{1}{1!}*(x1-x10)*fx1(x10,x20)+(x2-x20)*fx2(x10,x20)+\bruch{1}{2!}*(x1-x10)^2*fx1x1(x10,x20)+2*(x1-x10)(x2-x20)*fx1x2(x10,x20)+(x2-x20)^2*fx2x2(x10,x20) [/mm]

Leider komme ich schon bei diesem ersten Schritt des Algorithmus nicht weiter da ich das Problem habe dass ich nicht weiß was ich in der Taylorreihe jeweils für das t einsetzen muss.

Kann mir da jemand weiterhelfen??

        
Bezug
Nichtlineare Ausgleichsrechnun: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mi 23.02.2011
Autor: MathePower

Hallo SeLo,

> f(x1,x2,t) = x1*e^(-x2*t)
>  
> Startvektor x(0) =(0,6 ; 0,15)
>  
> i       1        2          3         4
>  ti      5       10        15       20
>  yi  0,303  0,184  0,112  0,0677
>  
> Bestimmung von x1 und x2
>  Ich habe nun einen Algorithmus aus dem Skript wo man die
> Funktion erst mal linearisieren  muss nach Taylor! Ich habe
> also die Funktion jeweils nach x1 und x2 abgeleitet und
> zwar die 1. und 2. Ableitung und dann noch die erste
> Ableitung von x1 noch nach x2 abgeleitet.
>
> Die Ableitungen:
>  
> fx1 = e^(-x2*t)
>  fx2 = -x1*e^(-x2*t)*t
>  fx1x1 = 0
>  fx2x2 = [mm]x1*t^2*e^{-x2*t}[/mm]
>  fx1x2 = -t*e^(-x2*t)
>  
> Die Taylorreihe:
>  
> f(x1,x2) =
> [mm]f(x10,x20)+\bruch{1}{1!}*(x1-x10)*fx1(x10,x20)+(x2-x20)*fx2(x10,x20)+\bruch{1}{2!}*(x1-x10)^2*fx1x1(x10,x20)+2*(x1-x10)(x2-x20)*fx1x2(x10,x20)+(x2-x20)^2*fx2x2(x10,x20)[/mm]
>  
> Leider komme ich schon bei diesem ersten Schritt des
> Algorithmus nicht weiter da ich das Problem habe dass ich
> nicht weiß was ich in der Taylorreihe jeweils für das t
> einsetzen muss.
>
> Kann mir da jemand weiterhelfen??


Hier ist doch sicher die Funktion

[mm]g\left(x_{1},x_{2}\right):=\summe_{i=1}^{4}\left(y_{i}-f\left(x_{1},x_{2},t_{i}\right) \ \right)^{2}[/mm]

gemeint.


Diese Funktion ist zu minimieren.

Dazu ist das nichlineare Gleichungssystem

[mm]\bruch{\partial g}{\partial x_{1}}\left(x_{1},x_{2}\right)=0[/mm]

[mm]\bruch{\partial g}{\partial x_{2}}\left(x_{1},x_{2}\right)=0[/mm]

zu lösen.

Um daraus ein lineares Gleichungssytem zu entwickeln,
ersetzt Du diese Gleichungen durch die Tangentialebene in [mm]\left(x_{1},x_{2}\right)[/mm]

Daraus ergibt sich dann ein Iterationsverfahren.
( Newton-Verfahren im [mm]\IR^{2}[/mm] )


Gruss
MathePower

Bezug
                
Bezug
Nichtlineare Ausgleichsrechnun: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Fr 25.02.2011
Autor: SeLo

Danke für die Hilfe werde es dann mal so versuchen!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]