matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenNewton Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Nichtlineare Gleichungen" - Newton Verfahren
Newton Verfahren < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton Verfahren: Kehrwertberechnung
Status: (Frage) beantwortet Status 
Datum: 02:24 So 24.06.2007
Autor: polyurie

Aufgabe
Achtung! Lange Aufgabenstellung, kurzer Sinn, noch kürzere Lösung (-hoff ich). Brauche nur Hilfe bei Aufgabenteil c).

Hier die Aufgabe:

Wie es leider häufig geschieht, war ein Student bei seiner Diplomarbeit unter Zeitdruck geraten. Es war die letzte Nacht vor dem Abgabetermin. Der verschüttete Kaffee hatte einige Tasten des Taschenrechners beschädigt. Der Student benötigte für eine letzte Auswertung noch Zahlreiche Kehrwerte 1/a für bestimmte Zahlen a. und zwar mit der Genauigkeit von [mm] 10^{-6}. [/mm] Leider waren die Kehrwert-Taste und die Divisionstaste das Taschenrechners defekt. Die Kehrwerte durch handschriftliche Division zu ermitteln erschien dem Student zu zeitintensiv und zu fehlerträchtig. Da kam ihm eine sehr gute Idee. Vielleicht konnte er mittels Taschenrechner einen Kehrwert 1/a auch durch eine Newton-Iteration ermitteln, die möglicherweise ohne Division auskommt!? Ihm fielen zu der Rechenaufgabe x=1/a auch gleich 3 äquivalente Nullstellengleichungen ein, die er mittels Newton-Verfahren lösen wollte.

[mm] f_{1(x)}=x-1/a=0 [/mm]
[mm] f_{2(x)}=ax-1 [/mm]
[mm] f_{3(x)}=1/x-a [/mm]

Er stellte fest, daß die ersten beiden Gleichungen eigentlich lineare Gleichungen sind, die in einem einzigen Newton Schritt zur Lösung führen. Doch leider sind dabei wieder Divisionen erforderlich.

Nun Ihre Aufgaben:

a) Zeigen Sie, daß die dritte Nullstellengleichung zu einer Newton-Iteration führt, die ohne Division auskommt.

b)Führen sie exemplarisch für a=0,81 die divisionsreie Newton-Iteration zur Berechnung von 1/a durch. Startwert [mm] x_{0}=1, [/mm] Genauigkeit [mm] 10^{-6} [/mm]

c) Zusatzfrage
Gehen sie davon aus, daß der Taschenrechner des Studenten auch wissenschaftliche Funktionen wie [mm] x^{y}, [/mm] sin(x), [mm] e^{x}, [/mm] cos(x), ln(x), tan(x), usw. bereitstellt. Leider ist auch die Taste für die Potenzierung [mm] x^{y} [/mm] defekt. Bieten die wissenschaftlichen Funktionen dennoch eine relativ einfache Möglichkeit zur Berechnung eines Kehrwert 1/a???

Hallo,

  puh, meine Hände bluten schon! Es geht mir hier nur um den letzten Aufgabenteil c). Der ersten beiden Teile sind klar. Hier die Ergebnisse, falls es jemanden interessiert oder weiterhilft:

a)  [mm] x_{n+1}=x_{n}(2-ax_{n}) [/mm]
b)  1,234568

So, bei c) weiß ich absolut nicht wo ich anfangen soll. Bin sehr dankbar für Hilfe. Danke!!

        
Bezug
Newton Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 So 24.06.2007
Autor: felixf

Hallo!

> Achtung! Lange Aufgabenstellung, kurzer Sinn, noch kürzere
> Lösung (-hoff ich). Brauche nur Hilfe bei Aufgabenteil c).
>  
> Hier die Aufgabe:
>  
> [...]
>  
> c) Zusatzfrage
>  Gehen sie davon aus, daß der Taschenrechner des Studenten
> auch wissenschaftliche Funktionen wie [mm]x^{y},[/mm] sin(x), [mm]e^{x},[/mm]
> cos(x), ln(x), tan(x), usw. bereitstellt. Leider ist auch
> die Taste für die Potenzierung [mm]x^{y}[/mm] defekt. Bieten die
> wissenschaftlichen Funktionen dennoch eine relativ einfache
> Möglichkeit zur Berechnung eines Kehrwert 1/a???

Ja, die gibt es. Es ist ja [mm] $x^y [/mm] = [mm] \exp(\ln(x^y))$. [/mm] Benutze jetzt eine einfache Rechenregel fuer den Logarithmus. Dann siehst du, wie du [mm] $x^y$ [/mm] mit Hilfe von [mm] $\exp$, $\ln$ [/mm] und einfacher Multiplikation ausrechenn kannst. Und wenn du jetzt fuer $y$ den Wert $-1$ einsetzt...

LG Felix


Bezug
                
Bezug
Newton Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 So 24.06.2007
Autor: polyurie

Vielen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]