matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenNewton Nulstellenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Nichtlineare Gleichungen" - Newton Nulstellenbestimmung
Newton Nulstellenbestimmung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton Nulstellenbestimmung: Frage
Status: (Frage) beantwortet Status 
Datum: 23:07 Mi 22.06.2005
Autor: Mikke

Hallo! und zwar soll ich das Newtonverfahren zur Nullstellenbestimmung beweisen. aber wie mach ich das?
also, sei I=[a,b] Teilmenge aus  [mm] \IR [/mm] ein nichtleeres Intervall und sei g: I--> [mm] \IR [/mm] eine zweimal steige diffbare Funktion mit g`(x) [mm] \not= [/mm] 0 und
|g(x)g``(x) |< [mm] |g`(x)^{2} [/mm] für alle x aus I. Definiere nun f: I--> [mm] \IR [/mm] durch
f(x) = x-g(x)/g`(x). Es gilt hierbei f(I) teilmenge aus I.
Zeigen soll ich nun dass f genau einen Fixpunkt  [mm] x_{0} [/mm] aus I besitzt und dass  [mm] x_{0} [/mm] Nullstelle von g ist. Doch wie mach ich das?
muss ja wahrscheinlich irgendwie den Banachschen Fixpktsatz verwenden oder aber den Mittelwertsatz aus Ana 2...
aber wie. wär schön wenn mir wer hilft. bye mikke

        
Bezug
Newton Nulstellenbestimmung: Banachscher FPS
Status: (Antwort) fertig Status 
Datum: 07:56 Fr 24.06.2005
Autor: mathemaduenn

Hallo Mikke,
Prinzipiell braucht man beide. Du kannst Dir ja mal die Voraussetzungen des Banachschen Fixpunktsatzes anschauen und sagen wo Du nicht weiterkommst. Die Aussage des BFPS ist ja ziemlich genau das was man haben will.
Alles klar?
gruß
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]