matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeNeumannsche Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Numerik linearer Gleichungssysteme" - Neumannsche Reihe
Neumannsche Reihe < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neumannsche Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:28 Mi 10.12.2008
Autor: Susan86

Aufgabe
Gegeben sei eine nxn Matrix A mit [mm] \parallel [/mm] A [mm] \parallel \le [/mm] 1.
Zeigen Sie, dass I-A invertierbar und es gilt:
(I-A)^(-1) = [mm] \summe_{k=1}^{\infty} A^k [/mm]

Hallo,
also ich glaub , dass diese Aufgabe echt einfach ist, aber ich muss sagen, dass unser Prof die Matrixnormen nur ganz kurz angeschnitten hab und ich nicht damit umzugehen weis. Das mit der Invertierbarkeit ist bestimmt ganz einafch , aber ich komm einfach nicht drauf. Wäre echt lieb wenn mir jemand weiterhelfen könnte. Ich verlange wirklich keine Lösungen , aber vielleicht Ansätze und ein paar Eklärungen, damit ich selbst weitermachen kann.
Danke schonmal!
Liebe Grüße

        
Bezug
Neumannsche Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Mi 10.12.2008
Autor: fred97


> Gegeben sei eine nxn Matrix A mit [mm]\parallel[/mm] A [mm]\parallel \le[/mm]

Da hast Du Dich vertippt ? Es muß ||A|| <1 lauten !!!!!


Ich mach Dir mal die Invertierbarkeit vor:
Es genügt zu zeigen: Kern (I-A) = {0}
Sei also x [mm] \in [/mm] Kern (I-A), also Ax = x. Es folgt: ||x|| = ||Ax|| [mm] \le [/mm] ||A|| ||x||.

Wäre nun x [mm] \not= [/mm] 0, so würde ||A|| [mm] \ge [/mm] 1 folgen. Wid.

FRED



> 1.
>  Zeigen Sie, dass I-A invertierbar und es gilt:
>  (I-A)^(-1) = [mm]\summe_{k=1}^{\infty} A^k[/mm]
>  Hallo,
>  also ich glaub , dass diese Aufgabe echt einfach ist, aber
> ich muss sagen, dass unser Prof die Matrixnormen nur ganz
> kurz angeschnitten hab und ich nicht damit umzugehen weis.
> Das mit der Invertierbarkeit ist bestimmt ganz einafch ,
> aber ich komm einfach nicht drauf. Wäre echt lieb wenn mir
> jemand weiterhelfen könnte. Ich verlange wirklich keine
> Lösungen , aber vielleicht Ansätze und ein paar Eklärungen,
> damit ich selbst weitermachen kann.
>  Danke schonmal!
>  Liebe Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]