matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeNeue Aufgaben Nr. 4
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathematik-Wettbewerbe" - Neue Aufgaben Nr. 4
Neue Aufgaben Nr. 4 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neue Aufgaben Nr. 4: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 17:56 Do 17.02.2005
Autor: Hanno

Hallo an alle!

Eine Zahl $n$ wird abundant genannt, wenn die Summe [mm] $\sigma [/mm] (n)$ ihrer Teiler (mitsamt der unechten Teiler 1 und n) größer als $2n$ ist. Man beweise: ist a abundant, so ist auch [mm] $a\cdot [/mm] b, [mm] b\in \IN$ [/mm] abundant.


Liebe Grüße,
Hanno

        
Bezug
Neue Aufgaben Nr. 4: Tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Fr 18.02.2005
Autor: Hanno

Hallo an alle!

-> Es ist hinreichend, die Behauptung für Primzahlen $b$ zu zeigen. Induktiv folgt dann die allgemeine Behauptung.
-> Man zerlege $a$ in [mm] $a_0\cdot b^c$ [/mm] für geeignete [mm] $a_0, c\in \IN$ [/mm] und untersuche, welche Teiler durch Multiplikation mit $b$ hinzukommen.


Liebe Grüße,
Hanno

Bezug
        
Bezug
Neue Aufgaben Nr. 4: gelöscht
Status: (Frage) beantwortet Status 
Datum: 20:56 Fr 18.02.2005
Autor: Stefan

Lieber Hanno!

Ich muss das noch einmal komplett überdenken,  [sorry].

Liebe Grüße
Stefan

Bezug
                
Bezug
Neue Aufgaben Nr. 4: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Fr 18.02.2005
Autor: Hanno

Hallo Stefan!

Hui, schön formell, vorallem die Formel für die Summe aller Teiler gefällt mir sehr gut *merk*. Ich hab's zwar ein wenig anders gemacht, aber das ist ja egal :-P

Wunderbar.

Liebe Grüße,
Hanno

Bezug
                        
Bezug
Neue Aufgaben Nr. 4: Noch eine Frage
Status: (Frage) beantwortet Status 
Datum: 21:25 Fr 18.02.2005
Autor: Hanno

Hallo Stefan!

Eine Frage habe ich doch noch:

> $ = [mm] \prod\limits_{{p \in P} \atop {\omega_p(b)=0}} \frac{p^{\omega_p(a)+1}-1}{p-1} \cdot \prod\limits_{{p \in P} \atop {\omega_p(b)>0}} \frac{p^{\omega_p(a) + \omega_p(b)+1}-1}{p-1} [/mm] $

> $ > 2a [mm] \cdot \prod\limits_{{p \in P} \atop {\omega_p(b)>0}} \frac{p^{\omega_p(b)+1}-1}{p-1} [/mm] $

Ich verstehe diesen Schritt nicht ganz. Es kann doch durchaus Primzahlen $p$ mit [mm] $\omega_{p}(a),\omega_{p}(b)\not= [/mm] 0$ geben, oder? Diese Primfaktoren werden in deinem erstem Produkt aber nicht berücksichtigt und somit kannst man es doch nicht durch $2a$ nach unten abschätzen, oder? Wo liegt hier mein Denkfehler? So meinst du es doch in diesem Schritt, richtig? In dem zweiten Produkt lässt du dann einfach die [mm] $\omega_{p}(a)$ [/mm] im Exponenten weg und verstärkst die Abschätzung damit noch.


Liebe Grüße,
Hanno

Bezug
                                
Bezug
Neue Aufgaben Nr. 4: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:12 Sa 19.02.2005
Autor: Stefan

Lieber Hanno!

Ja, du hast Recht. Ich denke jetzt noch mal über alles nach, genauso wie über meine andere besch... Lösung, die vollkommen falsch ist. Du bekommst nachher noch überarbeitete Lösungen. ;-)

Liebe Grüße
Stefan

Bezug
        
Bezug
Neue Aufgaben Nr. 4: neuer Versuch
Status: (Frage) beantwortet Status 
Datum: 09:29 Sa 19.02.2005
Autor: Stefan

Lieber Hanno!

Also, ich habe mir jetzt mal deinen Tipp angeschaut. In der Tat genügt es die Behauptung für Primzahlen $b$ zu zeigen. Sei $b=p'$ eine Primzahl. Dann gilt:

[mm] $\sigma(a\cdot [/mm] p')$

$= [mm] \prod\limits_{p \in P} \frac{p^{\omega_p(a \cdot p') +1}-1}{p-1}$ [/mm]

$= [mm] \prod\limits_{{p \in P} \atop {p \ne p'}} \frac{p^{\omega_p(a) +1}-1}{p-1} \cdot \frac{p'^{\omega_{p'}(a)+2}-1}{p'-1}$ [/mm]

$ [mm] \ge \prod\limits_{{p \in P} \atop {p \ne p'}} \frac{p^{\omega_p(a) +1}-1}{p-1} \cdot \frac{p'^{\omega_{p'}(a)+1}-1}{p'-1} \cdot [/mm] p'$

$= [mm] \prod\limits_{p \in P} \frac{p^{\omega_p(a)+1}-1}{p-1} \cdot [/mm] p'$

$= [mm] \sigma(a) \cdpt [/mm] p'$

$> 2ap'$.

Liebe Grüße
Stefan

Bezug
                
Bezug
Neue Aufgaben Nr. 4: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Sa 19.02.2005
Autor: Hanno

Hallo Stefan!

Wenn ich mich jetzt nicht verhaspelt habe, sollte die Lösung stimmen [ok]. So ähnlich, nur nicht so formell, habe ich das auch gemacht.

Liebe Grüße,
Hanno

PS: Super, die Beteiligung hier steigt ja schön, da kann ich ja gleich schon neue Aufgaben stellen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]