matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationNatürlicher Logarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Natürlicher Logarithmus
Natürlicher Logarithmus < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Natürlicher Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Sa 05.05.2012
Autor: Blaubart

Aufgabe
Sei  f(x) = ln x gegeben und [mm] f^{(n)}(x)=\bruch{(-1)^{n-1}*(n-1)!}{x^{n}} [/mm]
n [mm] \in \IN [/mm]
Berechnen Sie ln(1.1) mit einer Genauigkeit von [mm] 2*10^{-6} [/mm]

Hi,
nun ich weiß ganz ehrlich nicht was ich hier machen soll. Ich habe zwar schon  in einer anderen Aufgabe die n-te Ableitung bewiesen und ich denke es wird irgendwie auf das taylor polynom hinauslaufen. Aber dafür brauche ich einen Entwicklungspunkt der in dieser Aufgabe nicht gegeben ist.

Was mich aber aus dieser Vermutung aber raushaut ist das in der nächsten Aufgabe folgendes gefragt ist:
Zeigen Sie für die Taylor-Entwicklung von f, dass das Restglied [mm] R_{n}(x; [/mm] 1) für alle x [mm] \in [/mm] [ [mm] \bruch{1}{2} [/mm] ; 2] gegen 0 geht (n [mm] \to \infty). [/mm]
[Wie diese Aufgabe zu lösen ist weiß ich]

Jetzt frage ich mich immernoch was ich bei der oben gennanten Aufgabe überhaupt machen soll.

Gruß
blaubart


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Sa 05.05.2012
Autor: Diophant

Hallo,

ich denke einmal, du sollst du herausfinden, für welches n das Restglied kleiner als die geforderte Genauigkeit wird.

Als Entwicklungspunkt für die Taylorreihe wähle dazu x=1.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]