Nabla-Laplace-Operator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:28 Mo 24.09.2007 | Autor: | Ilias |
Aufgabe | Zeigen sie:
[mm] $\Delta(f*g)=f\Delta(g)+2(\nabla(f))*(\nabla(g))+g\Delta [/mm] f$ |
Hi leute,
ich komm bei der Aufgabe auf keinen Zweig. Hätte jetzt intuitiv einfach [mm] \Delta(f*g) [/mm] für jeweils zwei variablen x1, x2 ausgerechnet.
Der Laplace-Operator ist ja zweimal Nabla-operator angewendet. So steht es zumindest in meiner Formelsammlung. Da das so ist, hätte ich einfach zweimal partiell abgeleitet. Wäre das der richtige Weg?
Vielen dank,peace...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:55 Mo 24.09.2007 | Autor: | Riley |
Hallo Ilias,
es gilt doch:
[mm] \Delta f(x_1,...,x_n) [/mm] = [mm] \frac{\delta^2 f}{(\delta x_1)^2} [/mm] (x) + ... + [mm] \frac{\delta^2 f}{(\delta x_n)^2} [/mm] (x) = [mm] \sum_{i=1}^n \frac{\delta^2 f}{(\delta x_i)^2} [/mm] (x)
Das heißt du kannst [mm] \Delta(f [/mm] g) umschreiben zu:
[mm] \Delta [/mm] (fg) = [mm] \sum_{i=1}^n \frac{\delta^2(fg)}{(\delta x_i)^2} [/mm] = ... [mm] \star
[/mm]
Dies kann man nun mit der "Produktregel" weiter berechnen, habt ihr die schon bewiesen oder dürft sie anwenden:
[mm] \nabla [/mm] (fg) = g [mm] (\nabla(f)) [/mm] + f [mm] (\nabla [/mm] (g)) ?
Damit folgt dann
... [mm] \star [/mm] = [mm] \sum_{i=1}^n [/mm] ( [mm] \frac{\delta}{\delta x_i} [/mm] ( g [mm] \frac{\delta f}{\delta x_i} [/mm] + f [mm] \frac{\delta g}{\delta x_i})) [/mm]
= [mm] \sum_{i=1}^n [/mm] ( g [mm] \frac{ \delta^2 f}{\delta x_i ^2} [/mm] + [mm] \frac{\delta f}{\delta x_i} \frac{\delta g}{\delta x_i} [/mm] + f [mm] \frac{\delta^2 g}{\delta x_i^2} [/mm] + [mm] \frac{\delta f}{\delta x_i} \frac{\delta g}{\delta x_i}) [/mm] = ....
Kommst du damit nun weiter ?
Du musst es ja eigentlich nur noch zusammenfassen ;)
Viele Grüße,
Riley
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:00 Mo 24.09.2007 | Autor: | Ilias |
ja danke, das hat mir weitergeholfen...wie so oft ist vieles nicht so schwer wie es scheint...und mathe ist alle mal nicht so schwer, man muss nur die logik dahinter verstehen, nicht war
|
|
|
|