matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenMusterlösung falsch? Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Rationale Funktionen" - Musterlösung falsch? Ableitung
Musterlösung falsch? Ableitung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Musterlösung falsch? Ableitung: Kann das sein?
Status: (Frage) beantwortet Status 
Datum: 16:24 Fr 14.10.2011
Autor: PeterLee

Aufgabe
f(x) = [mm] \bruch{2x}{x^2+t^2} [/mm] + [mm] \bruch{1}{t} [/mm]

Gesucht 1. und 2. Ableitung.

Irgendwie scheint mir die Musterlösung falsch zu sein. Ich selbst komme auf dieses Ergebnis... stimmt das?

f'(x) = [mm] \bruch{2(x^2-t^2)-2x*2x}{(x^2-t^2)^2} [/mm] --> [mm] \bruch{1}{t} [/mm] ist ja eine Konstante.

f´´(x) = [mm] \bruch{4x-4*(x^2-t^2)^2 - (2x^2-2t^2)-4x* (2*(x^2+t^2) * 2x)}{(x^2+t^2)^4} [/mm]

Insbesondere bei der 2. Ableitung steht in der Musterlösung was ganz was anderes, wie kann denn das sein?
Danke.

        
Bezug
Musterlösung falsch? Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 14.10.2011
Autor: Adamantin


> f(x) = [mm]\bruch{2x}{x^2+t^2}[/mm] + [mm]\bruch{1}{t}[/mm]
>  
> Gesucht 1. und 2. Ableitung.
>  Irgendwie scheint mir die Musterlösung falsch zu sein.
> Ich selbst komme auf dieses Ergebnis... stimmt das?
>  
> f'(x) = [mm]\bruch{2(x^2-t^2)-2x*2x}{(x^2-t^2)^2}[/mm] -->
> [mm]\bruch{1}{t}[/mm] ist ja eine Konstante.

Was für ein Vorzeichen gilt denn jetzt? Entweder heißt es [mm] x^2 +t^2 [/mm] oder eben Minus, aber beide Varianten können nicht zum Ziel führen, oder? ^^ Demnach bleibt auch nicht 1 im Zähler übrig. Auch bei deiner Variante sind [mm] 2x^2-4x^2 [/mm] wohl kaum 1 ;) Also keine Ahnung, was genau du da eigentlich gerechnet hast. Wende die Quotientenregel noch einmal sorgfältig an, 1/t fällt ja eh weg, da kein x vorkommt, soweit korrekt.

>  
> f´´(x) = [mm]\bruch{4x-4*(x^2-t^2)^2 - (2x^2-2t^2)-4x* (2*(x^2+t^2) * 2x)}{(x^2+t^2)^4}[/mm]
>  
> Insbesondere bei der 2. Ableitung steht in der
> Musterlösung was ganz was anderes, wie kann denn das sein?
> Danke.


Bezug
                
Bezug
Musterlösung falsch? Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Fr 14.10.2011
Autor: PeterLee

Ja es heisst tatsächlich F(x)= [mm] \bruch{2x}{x^2+t^2} [/mm] + [mm] \bruch{1}{t} [/mm]

f´(x) = [mm] \bruch{2*(x^2+t^2) - 2x*2x}{(x^2+t^2)^2} [/mm] = [mm] \bruch{(2x^2+2t^2)-4x}{(x^2+t^2)^2} [/mm]

f´´(x) = [mm] \bruch{4x-4*(x^2+t^2)^2- (2x^2+2t^2)-4x * (2*(x^2+t^2)*2x)}{(x^2+t^2)^4} [/mm]

so kommt es bei mir nun wieder raus... habe ich es jetzt ricgtig angewendet?

Bezug
                        
Bezug
Musterlösung falsch? Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Fr 14.10.2011
Autor: schachuzipus

Hallo PeterLee,


> Ja es heisst tatsächlich F(x)= [mm]\bruch{2x}{x^2+t^2}[/mm] +  [mm]\bruch{1}{t}[/mm]
>  
> f´(x) = [mm]\bruch{2*(x^2+t^2) - 2x*2x}{(x^2+t^2)^2}[/mm]  [ok] =  [mm]\bruch{(2x^2+2t^2)-4x}{(x^2+t^2)^2}[/mm] [notok]

Hinten steht doch [mm] $-2x\cdot{}2x$ [/mm] und das ist [mm] $=-4x^{\red{2}}$ [/mm]

>  
> f´´(x) = [mm]\bruch{4x-4*(x^2+t^2)^2- (2x^2-2t^2)-4x * (2*(x^2+t^2)*2x)}{(x^2+t^2)^4}[/mm]
>  
> so kommt es bei mir nun wieder raus... habe ich es jetzt
> ricgtig angewendet?

Gruß

schachuzipus


Bezug
                                
Bezug
Musterlösung falsch? Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 14.10.2011
Autor: PeterLee


>  f´(x) = [mm]\bruch{2*(x^2+t^2) - 2x*2x}{(x^2+t^2)^2}[/mm]  [ok] =  
> [mm]\bruch{(2x^2+2t^2)-4x}{(x^2+t^2)^2}[/mm] [notok]
>  
> Hinten steht doch [mm]-2x\cdot{}2x[/mm] und das ist [mm]=-4x^{\red{2}}[/mm]

>  
>
>  f´´(x) = [mm]\bruch{4x-4*(x^2+t^2)^2- (2x^2-2t^2)-4x * (2*(x^2+t^2)*2x)}{(x^2+t^2)^4}[/mm]
>  

Ja genau das habe ich auch gerade noch gemerkt, da hattest du aber schon reserviert ;)

f´(x) = [mm] \bruch{(2x^2+2t^2)-4x^2}{(x^2+t^2)^2} [/mm]

f´´(x)= [mm] \bruch{4x-8x*(x^2+t^2)^2- (2x^2-2t^2)-4x^2 * (2*(x^2+t^2)*2x)}{(x^2+t^2)^4} [/mm]

Insbesondere die f´´ interessiert mich eben ob das sein kann.
Weil bei mir in der Lösung steht was ganz anderes...



Bezug
                                        
Bezug
Musterlösung falsch? Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 14.10.2011
Autor: schachuzipus

Hallo nochmal,


>
> Ja genau das habe ich auch gerade noch gemerkt, da hattest
> du aber schon reserviert ;)
>  
> f´(x) = [mm]\bruch{(2x^2+2t^2)-4x^2}{(x^2+t^2)^2}[/mm] [ok]

Ich würde hier noch  zusammenfassen, das macht das weitere Ableiten einfacher: Im Zähler schreibe [mm]2(t^2-x^2)[/mm]

>  
> f´´(x)= [mm]\bruch{\red{(}4x-8x\red{)}*(x^2+t^2)^2- \blue{[}(2x^2\green{-}2t^2)-4x^2\blue{]} * (2*(x^2+t^2)*2x)}{(x^2+t^2)^4}[/mm]

Klammern setzen wegen Punkt- vor Strichrechnung, außerdem zusammenfassen zu [mm]-4x[/mm]

Und das grüne "-" sollte ein "+" sein ...

>  
> Insbesondere die f´´ interessiert mich eben ob das sein
> kann.

Das hast du bis auf die beiden fehlenden Klammerpaare richtig!

> Weil bei mir in der Lösung steht was ganz anderes...

Na, du kannst dein Ergebnis noch ziemlich vereinfachen.

Fasse mal etwas zusammen und klammere dann im Zähler [mm](x^2+t^2)[/mm] aus, dann kannst du es einmal rauskürzen.

Merke: Bei richtiger Rechnung und Vereinfachung erhöht sich bei Funktionen dieses Typs die Potenz im Nenner mit jeder Ableitung um 1

Gruß

schachuzipus


Bezug
                                                
Bezug
Musterlösung falsch? Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Fr 14.10.2011
Autor: PeterLee

Sorry, wenn ich dich nochmal beanspruche...der Herr Professor macht das für meinen Geschmack recht schnell und beim Zusammenfassen sind mir einige Dinge noch nicht klar...

Ausgangslage, so wie bei mir nun auch:

f´´(x) = [mm] \bruch{-4x*(x^2+t^2)*(x^2*t^2)-4x(2x^2+2t^2)(x^2+t^2}{(x^2+t^2)^4} [/mm]

Nun kommt der auf Folgenden Term:

[mm] -4x(x^2+t^2) \bruch{(x^2*t^2)+(2x^2+2t^2}{(x^2-t^2)^4} [/mm]

Nun wundere ich mich, wo sind denn bitte das 2. -4x und das 2. [mm] (x^2+t^2) [/mm] was vorher ganz zum Schluss stand geblieben?

Bezug
                                                        
Bezug
Musterlösung falsch? Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Fr 14.10.2011
Autor: reverend

Hallo Peter,

> Sorry, wenn ich dich nochmal beanspruche...der Herr
> Professor macht das für meinen Geschmack recht schnell

Tja, so sind sie... ;-)


> und beim Zusammenfassen sind mir einige Dinge noch nicht
> klar...
>  
> Ausgangslage, so wie bei mir nun auch:
>
> f´´(x) =
> [mm]\bruch{-4x*(x^2+t^2)*(x^2*t^2)-4x(2x^2+2t^2)(x^2+t^2}{(x^2+t^2)^4}[/mm]
>  
> Nun kommt der auf Folgenden Term:
>  
> [mm]-4x(x^2+t^2) \bruch{(x^2*t^2)+(2x^2+2t^2}{(x^2-t^2)^4}[/mm]
>  
> Nun wundere ich mich, wo sind denn bitte das 2. -4x und das
> 2. [mm](x^2+t^2)[/mm] was vorher ganz zum Schluss stand geblieben?

Im Nenner steht doch sicher weiterhin [mm] (x^2\blue{+}t^2)^4 [/mm]

Ansonsten stehen die Faktoren [mm] -4x(x^2+t^2) [/mm] doch vor dem ganzen Bruch. Er hat also ausgeklammert. Schau Dir nochmal das MBDistributivgesetz an.

Grüße
reverend


Bezug
                                                                
Bezug
Musterlösung falsch? Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Fr 14.10.2011
Autor: PeterLee

aha, ja jetzt. Wahnsinn, ich seh vor lauter Bäumen den Wald schon nicht mehr :(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]