matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenMultiplikation von komplexen z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Multiplikation von komplexen z
Multiplikation von komplexen z < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation von komplexen z: komplexe zahlen
Status: (Frage) beantwortet Status 
Datum: 20:17 Mo 25.05.2009
Autor: idonnow

Aufgabe
Sei z1 = 3+i, z2 = 1+i. Berechnen Sie z1z2, [mm] z1/z2,z1^2,z2^2 [/mm]
und skizzieren Sie diese Zahlen
in der Gaußschen Zahlenebene.
Hinweis: Verwenden Sie Satz 4.5, um den Nenner reell zu machen.

Hallo Ihr lieben!
Meine Lösung zu z1xz2 lautet:

(3+i)(1+i)=(3*1)+i(3+1)
               = 3+3i+i
               = 4i+3

Ist die Lösung richtig? Ich habe noch eine zweite Lösung: [mm] 3+4i+i^2 [/mm] oder ist diese richtig?

        
Bezug
Multiplikation von komplexen z: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Mo 25.05.2009
Autor: XPatrickX


> Sei z1 = 3+i, z2 = 1+i. Berechnen Sie z1z2,
> [mm]z1/z2,z1^2,z2^2[/mm]
>   und skizzieren Sie diese Zahlen
>  in der Gaußschen Zahlenebene.
>  Hinweis: Verwenden Sie Satz 4.5, um den Nenner reell zu
> machen.
>  
> Hallo Ihr lieben!

Hallo idonnow


>  Meine Lösung zu z1xz2 lautet:
>  
> (3+i)(1+i)=(3*1)+i(3+1)
>                 = 3+3i+i
>                 = 4i+3  [notok]

Du kannst hier die Klammern nach dem üblichen Kommutativgesetz auflösen.

>  
> Ist die Lösung richtig? Ich habe noch eine zweite Lösung:
> [mm]3+4i+i^2[/mm] oder ist diese richtig?

Diese ist korrekt. Wobei du natürlich noch [mm] i^2=-1 [/mm] vereinfachen kannst, sodass sich $2+4i$ als Lösung ergibt.


Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]