matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMultinomialkoeffizient
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Multinomialkoeffizient
Multinomialkoeffizient < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multinomialkoeffizient: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:31 Mo 04.12.2017
Autor: X3nion

Hallo zusammen!

Ich habe eine Frage zum Multinomialkoeffizient.

In einem Beweis kommt folgendes vor:

(*) [mm] \frac{d^{k} g}{dt^{k}}(t) [/mm] = [mm] \summe_{i_{1},...,i_{k}=1}^{n} D_{i_{k}}...D_{i_{1}} [/mm] f(x + $ [mm] t\xi)\xi_{i_{1}}...\xi_{i_{k}}. [/mm]


Die Gleichheit (*) wurde durch vollständige Induktion bewiesen.

Nun steht weiter, dass - wenn unter den Indizes [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] der Index 1 genau [mm] \alpha_{1}-mal, [/mm] der Index 2 genau [mm] \alpha_{2}-mal, [/mm] ..., der Index k genau [mm] \alpha_{k}-mal [/mm] vorkommt, aus dem Corollar vom Satz von Schwarz über die Reihenfolge der Differentiation folgt, dass

[mm] D_{i_{k}}...D_{i_{1}} [/mm] f(x + [mm] t\xi) \xi_{i_{1}}...\xi_{i_{k}} [/mm] = [mm] D_{1}^{\alpha_{1}}...D_{n}^{\alpha_{n}} [/mm] f(x + [mm] t\xi) \xi_{1}^{\alpha_{1}}...\xi_{n}^{\alpha_{n}} [/mm]


Zwischenfrage
Was bedeutet es, dass unter den Indizes  [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] der Index 1 genau [mm] \alpha_{1}-mal, [/mm] der Index 2 genau [mm] \alpha_{2}-mal, [/mm] ..., der Index k genau [mm] \alpha_{k}-mal [/mm] vorkommt? Kann mir das jemand vielleicht an einem Beispiel erläutern?

----

Weiter steht es im Text: Da es aber genau [mm] \frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!} [/mm] k-tupel [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] von Zahlen 1 [mm] \le i_{K} \le [/mm] n gibt, bei denen der Index v genau [mm] \alpha_{v} [/mm] vorkommt (v = 1, ..., n, [mm] \alpha_{1} [/mm] + [mm] \alpha_{2} [/mm] 6 ... + [mm] \alpha_{n} [/mm] = k), ....


Frage 2
Wieso gibt es genau [mm] \frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!} [/mm] k-tupel [mm] (i_{1}, [/mm] ..., [mm] i_{k})? [/mm]
Kann mir das jemand erklären?


Ich wäre euch wie immer sehr dankbar!

Viele Grüße,
X3nion

        
Bezug
Multinomialkoeffizient: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:20 Do 07.12.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Multinomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:18 Do 07.12.2017
Autor: X3nion

Guten Morgen,
hoffentlich kann mir diesmal jemand helfen :-)

Ich habe eine Frage zum Multinomialkoeffizient.

In einem Beweis kommt folgendes vor:

(*) [mm] \frac{d^{k} g}{dt^{k}}(t) [/mm] = [mm] \summe_{i_{1},...,i_{k}=1}^{n} D_{i_{k}}...D_{i_{1}} [/mm] f(x + [mm] t\xi)\xi_{i_{1}}...\xi_{i_{k}}. [/mm]


Die Gleichheit (*) wurde durch vollständige Induktion bewiesen.

Nun steht weiter, dass - wenn unter den Indizes [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] der Index 1 genau [mm] \alpha_{1}-mal, [/mm] der Index 2 genau [mm] \alpha_{2}-mal, [/mm] ..., der Index k genau [mm] \alpha_{k}-mal [/mm] vorkommt, aus dem vom Satz von Schwarz über die Reihenfolge der Differentiation folgt, dass

[mm] D_{i_{k}}...D_{i_{1}} [/mm] f(x + [mm] t\xi) \xi_{i_{1}}...\xi_{i_{k}} [/mm] = [mm] D_{1}^{\alpha_{1}}...D_{n}^{\alpha_{n}} [/mm] f(x + [mm] t\xi) \xi_{1}^{\alpha_{1}}...\xi_{n}^{\alpha_{n}} [/mm]


Zwischenfrage
Was bedeutet es, dass unter den Indizes  [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] der Index 1 genau [mm] \alpha_{1}-mal, [/mm] der Index 2 genau [mm] \alpha_{2}-mal, [/mm] ..., der Index k genau [mm] \alpha_{k}-mal [/mm] vorkommt? Kann mir das jemand vielleicht an einem Beispiel erläutern?

----

Weiter steht es im Text: Da es aber genau [mm] \frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!} [/mm] k-tupel [mm] (i_{1}, [/mm] ..., [mm] i_{k}) [/mm] von Zahlen 1 [mm] \le i_{K} \le [/mm] n gibt, bei denen der Index v genau [mm] \alpha_{v} [/mm] vorkommt (v = 1, ..., n, [mm] \alpha_{1} [/mm] + [mm] \alpha_{2} [/mm] 6 ... + [mm] \alpha_{n} [/mm] = k), ....


Frage 2
Wieso gibt es genau [mm] \frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!} [/mm] k-tupel [mm] (i_{1}, [/mm] ..., [mm] i_{k})? [/mm]
Kann mir das jemand erklären?


Ich wäre euch wie immer sehr dankbar!

Viele Grüße,
X3nion

Bezug
                        
Bezug
Multinomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Sa 09.12.2017
Autor: donquijote


> Guten Morgen,
>  hoffentlich kann mir diesmal jemand helfen :-)
>  
> Ich habe eine Frage zum Multinomialkoeffizient.
>
> In einem Beweis kommt folgendes vor:
>
> (*) [mm]\frac{d^{k} g}{dt^{k}}(t)[/mm] =
> [mm]\summe_{i_{1},...,i_{k}=1}^{n} D_{i_{k}}...D_{i_{1}}[/mm] f(x +
> [mm]t\xi)\xi_{i_{1}}...\xi_{i_{k}}.[/mm]
>
>
> Die Gleichheit (*) wurde durch vollständige Induktion
> bewiesen.
>
> Nun steht weiter, dass - wenn unter den Indizes [mm](i_{1},[/mm]
> ..., [mm]i_{k})[/mm] der Index 1 genau [mm]\alpha_{1}-mal,[/mm] der Index 2
> genau [mm]\alpha_{2}-mal,[/mm] ..., der Index k genau [mm]\alpha_{k}-mal[/mm]
> vorkommt, aus dem vom Satz von Schwarz über die
> Reihenfolge der Differentiation folgt, dass
>
> [mm]D_{i_{k}}...D_{i_{1}}[/mm] f(x + [mm]t\xi) \xi_{i_{1}}...\xi_{i_{k}}[/mm]
> = [mm]D_{1}^{\alpha_{1}}...D_{n}^{\alpha_{n}}[/mm] f(x + [mm]t\xi) \xi_{1}^{\alpha_{1}}...\xi_{n}^{\alpha_{n}}[/mm]
>
>
> Zwischenfrage
> Was bedeutet es, dass unter den Indizes  [mm](i_{1},[/mm] ...,
> [mm]i_{k})[/mm] der Index 1 genau [mm]\alpha_{1}-mal,[/mm] der Index 2 genau
> [mm]\alpha_{2}-mal,[/mm] ..., der Index k genau [mm]\alpha_{k}-mal[/mm]
> vorkommt? Kann mir das jemand vielleicht an einem Beispiel
> erläutern?

Hallo,
wenn du z.B. bei 5 Variablen die Ableitung [mm]D_2D_3D_1D_1D_3D_1f[/mm] betrachtest, dann ist [mm]\alpha_1=3,\alpha_2=1,\alpha_3=2,\alpha_4=\alpha_5=0[/mm].

>
> ----
>
> Weiter steht es im Text: Da es aber genau
> [mm]\frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!}[/mm] k-tupel
> [mm](i_{1},[/mm] ..., [mm]i_{k})[/mm] von Zahlen 1 [mm]\le i_{K} \le[/mm] n gibt, bei
> denen der Index v genau [mm]\alpha_{v}[/mm] vorkommt (v = 1, ..., n,
> [mm]\alpha_{1}[/mm] + [mm]\alpha_{2}[/mm] 6 ... + [mm]\alpha_{n}[/mm] = k), ....
>
>
> Frage 2
> Wieso gibt es genau [mm]\frac{k!}{\alpha_{1}! \alpha_{2}!...\alpha_{n}!}[/mm]
> k-tupel [mm](i_{1},[/mm] ..., [mm]i_{k})?[/mm]
> Kann mir das jemand erklären?

Es handelt sich um Permutationen mit Wiederholung, siehe z.B.
https://de.wikipedia.org/wiki/Permutation#Permutation_mit_Wiederholung

>
>
> Ich wäre euch wie immer sehr dankbar!
>
> Viele Grüße,
>  X3nion


Bezug
                                
Bezug
Multinomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 Sa 09.12.2017
Autor: X3nion

Guten Abend donquijote und vielen Dank für deinen Beitrag, es ist mir nun klar geworden!

Viele Grüße,
X3nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]