Multiindex < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:23 Mi 25.09.2013 | Autor: | Herbart |
Hallo,
ich habe eine kurze Frage zum Multiindex. Wir haben nie [mm] $c_\alpha$ [/mm] definiert. Was ist also
[mm] $\summe_{|\alpha|\le k} {c_\alpha x^\alpha}=?$.
[/mm]
Bsp.: k=2
[mm] $\summe_{|\alpha|\le 2} {c_\alpha x^\alpha} [/mm] = [mm] c_{(0,0)}x^{(0,0)} [/mm] + [mm] c_{(1,0)}x^{(1,0)} [/mm] + [mm] c_{(0,1)}x^{(0,1)} [/mm] + [mm] c_{(1,1)}x^{(1,1)} [/mm] = [mm] c_{(0,0)}x_1^0 \cdot c_{(0,0)}x_2^0 [/mm] + [mm] c_{(1,0)}x_1^1 \cdot c_{(1,0)}x_2^0 [/mm] + [mm] c_{(0,1)}x_1^0\cdot c_{(0,1)}x_2^1 [/mm] + [mm] c_{(1,1)}x_1^1\cdot c_{(1,1)}x_2^1 [/mm] = [mm] c_{(0,0)} \cdot c_{(0,0)} [/mm] + [mm] c_{(1,0)}x_1 \cdot c_{(1,0)} [/mm] + [mm] c_{(0,1)}\cdot c_{(0,1)}x_2 [/mm] + [mm] c_{(1,1)}x_1\cdot c_{(1,1)}x_2$
[/mm]
= [mm] $c_{(0,0)}^2 [/mm] + [mm] c_{(1,0)}^2 x_1 [/mm] + [mm] c_{(0,1)}^2 x_2 [/mm] + [mm] c_{(1,1)}^2 x_1\cdot x_2$.
[/mm]
Wegen Monom-Def. für [mm] x\in\IR^n [/mm] und [mm] \alpha\in\IN_0^n [/mm] gilt [mm] $x^\alpha=x_1^{\alpha_1}+...+x_n^{\alpha_n}$. [/mm] Wie ist das aber mit diesem [mm] c_{\alpha}, [/mm] z.B. [mm] c_{(1,0)}? [/mm] Wie ist das def.?
Intuitiv würde ich sagen: [mm] c_{(1,0)}=c_1\cdot c_0. [/mm] Richtig?
MfG Herbart
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:44 Mi 25.09.2013 | Autor: | Diophant |
Hallo herbart,
ich bin mir nicht sicher. Aber die Tatsache, dass bis jetzt noch keine Antwort erfolgt ist, könnte damit zusammenhängen, dass aus deiner Frage die Bedeutung des [mm] \le [/mm] - Symbols nicht so ganz hervorgeht, bzw. (damit hängt es zusammen): ist k auich ein Multinidex oder eine Konstante? Und ist klar, dass für den Multinidex [mm] \alpha [/mm] n=2 gilt?
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:00 Mi 25.09.2013 | Autor: | Herbart |
Danke dir Diophant für den Hinweis.
Ich ergänze die fehlenden Informationen, die aus der Def. der Polynomfunktion im [mm] \IR^n [/mm] stammen:
Sei [mm] k\in \IN. [/mm] Die Funktion [mm] $p:\IR^n\to\IR$ [/mm] heißt Polynomfunktion vom Grad [mm] \le [/mm] k, fallst [mm] $p(x):=\summe_{|\alpha|\le k}{c_\alpha x^\alpha} [/mm] für [mm] \alpha \in \IN_0^n [/mm] ein Multiindex und gewisse [mm] c_\alpha\in\IR [/mm] mit mind. einem [mm] c_\alpha \not=0 [/mm] mit [mm] |\alpha|=k.
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:15 Mi 25.09.2013 | Autor: | tobit09 |
> Sei [mm]k\in \IN.[/mm] Die Funktion [mm]$p:\IR^n\to\IR$[/mm] heißt
> Polynomfunktion vom Grad [mm]\le[/mm] k, fallst
> [mm]$p(x):=\summe_{|\alpha|\le k}{c_\alpha x^\alpha}[/mm] für
> [mm]\alpha \in \IN_0^n[/mm] ein Multiindex und gewisse
> [mm]c_\alpha\in\IR[/mm] mit mind. einem [mm]c_\alpha \not=0[/mm] mit
> [mm]|\alpha|=k.[/mm]
Es soll sicherlich "Polynomfunktion vom Grad $k$" und nicht "vom Grad [mm] $\le [/mm] k$" heißen.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:02 Do 26.09.2013 | Autor: | Herbart |
> > Sei [mm]k\in \IN.[/mm] Die Funktion [mm]$p:\IR^n\to\IR$[/mm] heißt
> > Polynomfunktion vom Grad [mm]\le[/mm] k, fallst
> > [mm]$p(x):=\summe_{|\alpha|\le k}{c_\alpha x^\alpha}[/mm] für
> > [mm]\alpha \in \IN_0^n[/mm] ein Multiindex und gewisse
> > [mm]c_\alpha\in\IR[/mm] mit mind. einem [mm]c_\alpha \not=0[/mm] mit
> > [mm]|\alpha|=k.[/mm]
> Es soll sicherlich "Polynomfunktion vom Grad [mm]k[/mm]" und nicht
> "vom Grad [mm]\le k[/mm]" heißen.
Richtig. In der digitalen Version des Skriptes ist es auch richtig geschrieben. Meine Vorlesungsnotizen sagen zwar [mm] \le [/mm] k, aber wegen mind. ein [mm] c_\alpha\not=0 [/mm] für [mm] |\alpha|=k [/mm] sollte es wahrscheinlich eher ein Polynom vom Grad k sein.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Mi 25.09.2013 | Autor: | tobit09 |
Hallo Herbart,
> ich habe eine kurze Frage zum Multiindex. Wir haben nie
> [mm]c_\alpha[/mm] definiert.
Doch. Gemäß deiner Mitteilung ist für jedes [mm] $\alpha\in\IN_0^n$ [/mm] mit [mm] $|\alpha|\le [/mm] k$ eine reelle Zahl [mm] $c_\alpha$ [/mm] gegeben.
Beispiel für eine Polynomfunktion vom Grad 2 im [mm] $\IR^2$ [/mm] mit
[mm] $c_{(2,0)}=\pi,\;c_{(1,1)}=7,\;c_{(0,2)}=-1,\;c_{(1,0)}=5,\;c_{(0,1)}=2,\;c_{(0,0)}=1$:
[/mm]
[mm] $p\colon\IR^2\to\IR,\quad p(x,y)=\pi*x^2+7*xy+(-1)*y^2+5x+2y+1$.
[/mm]
> Was ist also
> [mm]\summe_{|\alpha|\le k} {c_\alpha x^\alpha}=?[/mm].
> Bsp.: k=2
> [mm]\summe_{|\alpha|\le 2} {c_\alpha x^\alpha} = c_{(0,0)}x^{(0,0)} + c_{(1,0)}x^{(1,0)} + c_{(0,1)}x^{(0,1)} + c_{(1,1)}x^{(1,1)}[/mm]
Da fehlen noch die Terme zu [mm] $\alpha=(0,2)$ [/mm] und [mm] $\alpha=(2,0)$.
[/mm]
> [mm]= c_{(0,0)}x_1^0 \cdot c_{(0,0)}x_2^0 + c_{(1,0)}x_1^1 \cdot c_{(1,0)}x_2^0 + c_{(0,1)}x_1^0\cdot c_{(0,1)}x_2^1 + c_{(1,1)}x_1^1\cdot c_{(1,1)}x_2^1 = c_{(0,0)} \cdot c_{(0,0)} + c_{(1,0)}x_1 \cdot c_{(1,0)} + c_{(0,1)}\cdot c_{(0,1)}x_2 + c_{(1,1)}x_1\cdot c_{(1,1)}x_2[/mm]
Nein. Z.B. [mm] $c_{(1,1)}x^{(1,1)}=c_{(1,1)}x_1^1x_2^1$ [/mm] wäre korrekt.
> = [mm]c_{(0,0)}^2 + c_{(1,0)}^2 x_1 + c_{(0,1)}^2 x_2 + c_{(1,1)}^2 x_1\cdot x_2[/mm].
Abgesehen von den Quadratzeichen und den fehlenden Termen stimmt es.
> Wegen Monom-Def. für [mm]x\in\IR^n[/mm] und [mm]\alpha\in\IN_0^n[/mm] gilt
> [mm]x^\alpha=x_1^{\alpha_1}+...+x_n^{\alpha_n}[/mm].
Es muss $*$ statt $+$ heißen.
> Wie ist das
> aber mit diesem [mm]c_{\alpha},[/mm] z.B. [mm]c_{(1,0)}?[/mm] Wie ist das
> def.?
> Intuitiv würde ich sagen: [mm]c_{(1,0)}=c_1\cdot c_0.[/mm]
> Richtig?
Nein. Die [mm] $c_{\alpha}$ [/mm] sind wie gesagt irgendwelche reellen Zahlen. Eine Funktion [mm] $p\colon\IR^n\to\IR$ [/mm] heißt Polynomfunktion, falls irgendwelche reellen Zahlen [mm] $c_\alpha$ [/mm] existieren mit [mm] $p(x)=\summe_{|\alpha|\le k}{c_\alpha x^\alpha} [/mm] $ und [mm] $c_\alpha\not=0$ [/mm] für mindestens ein [mm] $\alpha\in\IN_0^n$ [/mm] mit [mm] $|\alpha|=k$.
[/mm]
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:57 Do 26.09.2013 | Autor: | Herbart |
Hallo tobit09,
> > ich habe eine kurze Frage zum Multiindex. Wir haben nie
> > [mm]c_\alpha[/mm] definiert.
> Doch. Gemäß deiner Mitteilung ist für jedes
> [mm]\alpha\in\IN_0^n[/mm] mit [mm]|\alpha|\le k[/mm] eine reelle Zahl
> [mm]c_\alpha[/mm] gegeben.
Vielen Dankfür diese Erklärung.
> Beispiel für eine Polynomfunktion vom Grad 2 im [mm]\IR^2[/mm] mit
>
> [mm]c_{(2,0)}=\pi,\;c_{(1,1)}=7,\;c_{(0,2)}=-1,\;c_{(1,0)}=5,\;c_{(0,1)}=2,\;c_{(0,0)}=1[/mm]:
>
> [mm]p\colon\IR^2\to\IR,\quad p(x,y)=\pi*x^2+7*xy+(-1)*y^2+5x+2y+1[/mm].
>
>
> > Was ist also
> > [mm]\summe_{|\alpha|\le k} {c_\alpha x^\alpha}=?[/mm].
> > Bsp.:
> k=2
> > [mm]\summe_{|\alpha|\le 2} {c_\alpha x^\alpha} = c_{(0,0)}x^{(0,0)} + c_{(1,0)}x^{(1,0)} + c_{(0,1)}x^{(0,1)} + c_{(1,1)}x^{(1,1)}[/mm]
>
> Da fehlen noch die Terme zu [mm]\alpha=(0,2)[/mm] und [mm]\alpha=(2,0)[/mm].
Stimmt. Vergessen...
>
> > [mm]= c_{(0,0)}x_1^0 \cdot c_{(0,0)}x_2^0 + c_{(1,0)}x_1^1 \cdot c_{(1,0)}x_2^0 + c_{(0,1)}x_1^0\cdot c_{(0,1)}x_2^1 + c_{(1,1)}x_1^1\cdot c_{(1,1)}x_2^1 = c_{(0,0)} \cdot c_{(0,0)} + c_{(1,0)}x_1 \cdot c_{(1,0)} + c_{(0,1)}\cdot c_{(0,1)}x_2 + c_{(1,1)}x_1\cdot c_{(1,1)}x_2[/mm]
>
> Nein. Z.B. [mm]c_{(1,1)}x^{(1,1)}=c_{(1,1)}x_1^1x_2^1[/mm] wäre
> korrekt.
Da hast du Recht. Ein wenig doppelt.
> > = [mm]c_{(0,0)}^2 + c_{(1,0)}^2 x_1 + c_{(0,1)}^2 x_2 + c_{(1,1)}^2 x_1\cdot x_2[/mm].
>
> Abgesehen von den Quadratzeichen und den fehlenden Termen
> stimmt es.
>
> > Wegen Monom-Def. für [mm]x\in\IR^n[/mm] und [mm]\alpha\in\IN_0^n[/mm] gilt
> > [mm]x^\alpha=x_1^{\alpha_1}+...+x_n^{\alpha_n}[/mm].
> Es muss [mm]*[/mm] statt [mm]+[/mm] heißen.
Mit dem Zeichen vertan. "Gerechnet" habe ich es ja mit [mm] $\cdot$.
[/mm]
> > Wie ist das
> > aber mit diesem [mm]c_{\alpha},[/mm] z.B. [mm]c_{(1,0)}?[/mm] Wie ist das
> > def.?
> > Intuitiv würde ich sagen: [mm]c_{(1,0)}=c_1\cdot c_0.[/mm]
> > Richtig?
> Nein. Die [mm]c_{\alpha}[/mm] sind wie gesagt irgendwelche reellen
> Zahlen. Eine Funktion [mm]p\colon\IR^n\to\IR[/mm] heißt
> Polynomfunktion, falls irgendwelche reellen Zahlen [mm]c_\alpha[/mm]
> existieren mit [mm]p(x)=\summe_{|\alpha|\le k}{c_\alpha x^\alpha}[/mm]
> und [mm]c_\alpha\not=0[/mm] für mindestens ein [mm]\alpha\in\IN_0^n[/mm] mit
> [mm]|\alpha|=k[/mm].
>
>
> Viele Grüße
> Tobias
Danke dir Tobias. Da ich momentan recht wenig Zeit habe, sind mir einige Flüchtigkeitsfehler unterlaufen. Das tut mir Leid. Ich danke dir auf jeden Fall für deine Geduld und ausführliche Erklärung. Jetzt weiß ich etwas mit [mm] c_\alpha [/mm] anzufangen.
LG Herbart
|
|
|
|