Münzwurf / Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachten Sie ein Münzwurf-Experiment, d.h. Sie haben eine Folge von unabhängigen Zufallsvariablen [mm] X_1,X_2,... [/mm] und eine Zahl p [mm] \in [/mm] [0,1], sodass [mm] P(X_i [/mm] = 1) = p und [mm] P(X_i [/mm] = 0) = 1 - p.
Betrachten Sie für p die Schätzer
[mm] p_1 [/mm] := [mm] \bruch{1}{n}\summe_{i=1}^{n}X_i
[/mm]
[mm] p_2 [/mm] := [mm] $\bruch{1}{n+2}( [/mm] 1 + [mm] \summe_{i=1}^{n}X_i [/mm] )$
Zeigen Sie:
a) [mm] $E_p[(p_2 [/mm] - [mm] p)^2] [/mm] = [mm] \bruch{1}{(n+2)^2}( n^2 \cdot E_p[(p_1 [/mm] - [mm] p)^2] [/mm] + (1 - [mm] 2p)^2 [/mm] )$
b) für alle p mit $|p - [mm] \bruch{1}{2}| \le \bruch{1}{\wurzel(8)}$ [/mm] gilt
[mm] $E_p[(p_2 [/mm] - [mm] p)^2] [/mm] = [mm] E_p[(p_1 [/mm] - [mm] p)^2] [/mm] $ für alle n [mm] \in \IN [/mm] |
Hallo und ein frohes neues Jahr.
Leider blicke ich hier kaum durch.
Ich weiß, dass [mm] E_\lambda(X) [/mm] = [mm] \integral_{}^{}{X dP_\lambda} [/mm] ist. Allerdings weiß ich nicht, wie man nach [mm] P_\lambda [/mm] integriert.
Ich verstehe auch nicht, ob die "p" in der Aufgabenstellung variabel sind oder nicht.
Kann mir bitte jemand erklären, was bei dieser Aufgabe genau zu tun ist, evtl. die ersten Schritte vorrechnen?
Danke schön
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:21 Mo 02.01.2012 | Autor: | luis52 |
Moin
>
> Leider blicke ich hier kaum durch.
> Ich weiß, dass [mm]E_\lambda(X)[/mm] = [mm]\integral_{}^{}{X dP_\lambda}[/mm]
> ist. Allerdings weiß ich nicht, wie man nach [mm]P_\lambda[/mm]
> integriert.
Hier wird nicht integriert. Schreibe
$ [mm] p_2 [/mm] $ := $ [mm] \bruch{1}{n+2}( [/mm] 1 + [mm] np_1) [/mm] $
und nutze aus, dass [mm] $\summe_{i=1}^{n}X_i [/mm] $ binomialverteilt ist.
> Ich verstehe auch nicht, ob die "p" in der
> Aufgabenstellung variabel sind oder nicht.
>
[mm] $p_1,p_2$ [/mm] sind Zufallsvariablen, $p_$ ist fest.
vg Luis
|
|
|
|
|
Danke luis52, für die Hilfe.
Soweit bin ich nun gekommen:
Also ich muss ja zeigen, dass $ [mm] E_p[(p_2 [/mm] - [mm] p)^2] [/mm] = [mm] \bruch{1}{(n+2)^2}( n^2 \cdot E_p[(p_1 [/mm] - [mm] p)^2] [/mm] + (1 - [mm] 2p)^2 [/mm] ) $ ist.
Ich möchte nun die linke Seite in die rechte überführen:
[mm] $E_p[(p_2 [/mm] - [mm] p)^2] [/mm] = [mm] E_p[(p^2_2 [/mm] - [mm] 2\cdot p_2 \cdot [/mm] p + [mm] p^2)]$ [/mm]
Nun setze ich statt $ [mm] p_2 [/mm] = [mm] \bruch{1}{n+2}( [/mm] 1 + [mm] np_1) [/mm] $ ein:
$ [mm] E_p[(( \bruch{1}{n+2}( [/mm] 1 + [mm] np_1))^2 [/mm] - [mm] 2\cdot [/mm] ( [mm] \bruch{1}{n+2}( [/mm] 1 + [mm] np_1)) \cdot [/mm] p + [mm] p^2)] [/mm] = $
$ [mm] \bruch{1}{(n+2)^2}E_p[(1+np_1)^2 [/mm] - [mm] 2p(n+2)(1+np_1) [/mm] + [mm] p^2 \cdot (n+2)^2] [/mm] = $
$ [mm] \bruch{1}{(n+2)^2}E_p[1 [/mm] + [mm] 2np_1 +n^2 p^2_1 [/mm] - 2np - [mm] 2n^2 pp_1 [/mm] - 4p - [mm] 4npp_1 [/mm] + [mm] n^2 p^2 [/mm] + [mm] 4np^2 [/mm] + [mm] 4p^2] [/mm] = $
$ [mm] \bruch{1}{(n+2)^2}E_p[(n^2 p^2_1 [/mm] - [mm] 2n^2 pp_1 [/mm] + [mm] n^2 p^2) [/mm] + (1 - 4p + [mm] 4p^2) [/mm] + [mm] 2np_1 [/mm] - 2np - [mm] 4npp_1 [/mm] + [mm] 4np^2] [/mm] = $
$ [mm] \bruch{1}{(n+2)^2}E_p[n^2 (p_1 [/mm] - [mm] p)^2 [/mm] + (1 - [mm] 2p)^2 [/mm] + [mm] 2np_1 [/mm] - 2np - [mm] 4npp_1 [/mm] + [mm] 4np^2] [/mm] = $
So, das ist ja FAST das, was ich haben möchte, allerdings stört mich noch das [mm] (2np_1 [/mm] - 2np - [mm] 4npp_1 [/mm] + [mm] 4np^2).
[/mm]
Hab ich mich irgendwo verrechnet, oder kann man das noch irgendwie zusammenfassen?
Ich habe mich auch mal am 2. Teil versucht:
Ich habe [mm] $k:=E_p[(p_2 [/mm] - [mm] p)^2]$ [/mm] und [mm] $s:=E_p[(p_1 [/mm] - [mm] p)^2]$ [/mm] genannt um Schreibarbeit zu sparen.
Beh.: k [mm] \le [/mm] s für alle n [mm] \in \IN
[/mm]
Nun weiß ich aus dem ersten Teil, dass $k = [mm] \bruch{1}{(n+2)^2}[n^2 [/mm] s + [mm] (1-2p)^2]$ [/mm] ist.
Wenn ich das nach s auflöse, komme ich auf: $ s = [mm] \bruch{1}{n^2}[k(n+2)^2 [/mm] - [mm] (1-2p)^2)] [/mm] $
also Beh.: $ k [mm] \le \bruch{1}{n^2}[k(n+2)^2 [/mm] - [mm] (1-2p)^2)] [/mm] $
wenn ich hier immer das Ungleichheitszeichen richtig gedreht habe, erhalte ich:$ k [mm] \ge \bruch{(1-2p)^2}{4n+4} [/mm] $
und wenn ich p wie angegeben einsetze müsste rauskommen: $ k [mm] \ge \bruch{1}{8} \cdot \bruch{1}{n+1} [/mm] $
Bringt mir das alles überhaupt etwas?
Danke für jeden Tipp
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Mi 04.01.2012 | Autor: | luis52 |
Puh, das wird mir zu wirr.
Vielleicht helfen dir die folgenden Ueberlegungen auf die Spruenge:
1) [mm] $p_1$ [/mm] ist ein arithmetisches Mittel, fuer das [mm] $\operatorname{E}_p[p_1]$ [/mm] und [mm] $\operatorname{Var}_p[p_1]$ [/mm] leicht zu berechnen ist.
Du wirst feststellen, dass [mm] $\operatorname{E}_p[(p_1-p)^2]=\operatorname{Var}_p[p_1]=\frac{p(1-p)}{n}$.
[/mm]
2) [mm] $\operatorname{E}_p[(p_2-p)^2]=(\operatorname{E}_p[p_2]-p)^2+\operatorname{Var}_p[p_2]$, [/mm] siehe hier Satz 8.2.
3) Mit $ [mm] p_2 [/mm] $ := $ [mm] \bruch{1}{n+2}( [/mm] 1 + [mm] np_1) [/mm] $ kannst du sowohl [mm] $(\operatorname{E}_p[p_2]-p)^2$ [/mm] als auch [mm] $\operatorname{Var}_p[p_2]$ [/mm] mit 1) leicht bestimmen.
vg Luis
PS: Muss in Teileiaufgabe b) in der Behauptung nicht irgendwo ein Ungleichheitszeichen stehen?
|
|
|
|
|
> PS: Muss in Teileiaufgabe b) in der Behauptung nicht
> irgendwo ein Ungleichheitszeichen stehen?
>
Da hast du natürlich Recht. Es muss heißen:
[mm] E_p[(p_2 [/mm] - [mm] p)^2] \le E_p[(p_1 [/mm] - [mm] p)^2]
[/mm]
|
|
|
|
|
Hallo noch 'mal,
ich habe es jetzt mit deinen Tipps noch 'mal versucht und bin allerdings im Aufgabenteil b darauf gekommen, dass die Ungleichung für alle p gilt, nicht nur für die p mit [mm] |p-0,5|<=\bruch{1}{\wurzel{8}}. [/mm]
Wo geht das in die Lösung ein?
Wäre nett, wenn du mir da noch 'mal auf die Sprünge helfen könntest.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:58 Do 05.01.2012 | Autor: | luis52 |
Konntest du denn die behaupteten Formeln nachweisen?
Es laeuft damit auf einen Vergleich von
[mm] $f_1(p)=\frac{p(1-p)}{n}$ [/mm] und [mm] $f_2(p)=\frac{1}{(n+2)^2}(np(1-p)+(1-2p)^2)$ [/mm] hinaus...
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:17 Do 05.01.2012 | Autor: | Freaky |
Hallo zusammen,
ich sitze auch an obiger Aufgabe.
Allerdings habe ich schon zu Beginn eine andere Frage: Beträgt die Varianz des arithmetischen Mittels nicht in diesem Fall p(1-p)? Denn die Varianz einer Binomialverteilung lautet ja np(1-p), und um die des arithmetischen Mittels zu bekommen, muss man doch durch n teilen, oder?
Gruß,
Freaky
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:22 Do 05.01.2012 | Autor: | luis52 |
Moin Freaky,
willkommen an Bord.
[mm] $p_1$ [/mm] ist das arithmetische Mittel von $n_$ unabhaengigen *Bernoulli*-verteilten Variablen, also Binomial(1,$p_$). Die haben die Varianz $p(1-p)$, also [mm] $\operatorname{Var}[p_1]=p(1-p)/n$.
[/mm]
vg Luis
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Sa 07.01.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|