Monotonie und Intervalle < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:04 Mi 22.02.2006 | Autor: | vavi |
Aufgabe | Gegeben ist die Ableitungsfunktion f' einer Funktion f. In welchen Intervallen kann Monotonie vorliegen?
f'(x)= (x+1)³ |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe ein kleines Problem mit der Monotonie. Ich habe keine Ahnung wie ich diese Aufgabe anfangen soll. Vielleicht könntet ihr mir ja irgendwie weiterhelfen!!! Wäre echt super.
MFG Vavi
PS: Kurz noch eine Frage. Wie funktioniert das nochmal mit den eckigen Klammern, also den Intervallen? Wann muss ich ein offenes und wann ein geschlossenes Intervall setzen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:19 Mi 22.02.2006 | Autor: | Yuma |
Hallo Vavi,
> ich habe ein kleines Problem mit der Monotonie. Ich habe
> keine Ahnung wie ich diese Aufgabe anfangen soll.
> Vielleicht könntet ihr mir ja irgendwie weiterhelfen!!!
Du weißt ja sicher, dass die erste Ableitung $f'(x)$ die Steigung der zugrundeliegenden Funktion $f(x)$ ist. Daraus kann man schon erkennen, dass eine Funktion $f(x)$ in einem Bereich streng monoton steigt, genau dann wenn $f'(x)>0$ ist in diesem Bereich. Umgekehrt gilt: Eine Funktion $f(x)$ in einem Bereich streng monoton fallend genau dann, wenn $f'(x)<0$ ist in diesem Bereich.
> Gegeben ist die Ableitungsfunktion f' einer Funktion f. In
> welchen Intervallen kann Monotonie vorliegen?
> $f'(x)= [mm] (x+1)^{3}$
[/mm]
Schau dir die Ableitung mal genau an - wann (bzw. an welcher Stelle) kann die Null werden, wann ist sie größer Null, wann ist sie kleiner Null...?
Es gibt nur ein [mm] $x_{0}$ [/mm] für das [mm] $f'(x_{0})=0$ [/mm] gilt - welches wohl?
Was passiert rechts und links von dieser Nullstelle, gilt dort $f'(x)>0$ (streng monoton steigend) oder $f'(x)<0$ (streng monoton fallend)?
> PS: Kurz noch eine Frage. Wie funktioniert das nochmal mit
> den eckigen Klammern, also den Intervallen? Wann muss ich
> ein offenes und wann ein geschlossenes Intervall setzen.
Es kommt natürlich darauf an, was du darstellen willst:
Soll z.B. der Startpunkt im Intervall enthalten sein, der Endpunkt aber nicht, z.B. [mm] $0\le [/mm] x<2$, so schreibt man [mm] $x\in [/mm] [0,2[$.
Soll umgekehrt der Endpunkt im Intervall enthalten sein, der Startpunkt aber nicht, z.B. [mm] $-2
Beides wären sogenannte halboffene Intervalle.
Sollen sowohl der Start- als auch der Endpunkt im Intervall enthalten sein (geschlossenes Intervall), z.B. [mm] $1\le x\le [/mm] 5$, so schreibt man [mm] $x\in [/mm] [1,5]$, und sollen sowohl der Start- als auch der Endpunkt nicht im Intervall enthalten sein (offenes Intervall), z.B. $0<x<7$, so schreibt man [mm] $x\in [/mm] ]0,7[$.
Damit hätten wir alle Möglichkeiten!
Alles klar? Ansonsten bitte nochmal nachfragen!
MFG,
Yuma
|
|
|
|