matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenMonotonie
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Monotonie
Monotonie < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 23.02.2011
Autor: Palme

Aufgabe
Zeigen Sie durch Rechnung,dass f in D streng monoton fallend ist.

[mm] f(x)=\left( \bruch{2x+1}{x-2} \right) [/mm]

Hallo, ich kenne zwar diesen Monotoniesatz weiß ihn aber nicht anzuwenden.

[mm] f(x)'=\left( \bruch{-5}{(x-2)^2} \right) [/mm]

D=R ohne 2

Muss ich nun um heraus zu finden ob f(x) streng monoton fallend oder steigend ist irgend ein x  außer 2 in die 1. Ableitung setzen ?

Gruß Palme

        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 23.02.2011
Autor: fred97


> Zeigen Sie durch Rechnung,dass f in D streng monoton
> fallend ist.
>  
> [mm]f(x)=\left( \bruch{2x+1}{x-2} \right)[/mm]
>  Hallo, ich kenne
> zwar diesen Monotoniesatz weiß ihn aber nicht anzuwenden.
>  
> [mm]f(x)'=\left( \bruch{-5}{(x-2)^2} \right)[/mm]
>  
> D=R ohne 2
>  
> Muss ich nun um heraus zu finden ob f(x) streng monoton
> fallend oder steigend ist irgend ein x  außer 2 in die 1.
> Ableitung setzen ?
>
> Gruß Palme


Es gilt doch der

SATZ:

             Ist f'(x) <0 für jedes x [mm] \in [/mm] D, so ist f auf D streng monoton fallend.

bei Dir ist

$ f'(x)= [mm] \bruch{-5}{(x-2)^2} [/mm] $

Welches Vorzeichen hat der Zähler, welches Vorzeichen hat der Nenner (für x [mm] \ne [/mm] 0 ) ?

FRED


Bezug
                
Bezug
Monotonie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mi 23.02.2011
Autor: Palme

ok, ist es so, dass ich nur auf die Vorzeichen von Zähler und Nenner der 1. Ableitung achten muss? also in meinem Beispiel ist f(x) streng monoton fallend weil der Zähler der 1. Ableitung negativ ist .


wären Zähler und Nenner positiv, würde f(x) streng monoton steigen , oder ?

Bezug
                        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 23.02.2011
Autor: fred97


> ok, ist es so, dass ich nur auf die Vorzeichen von Zähler
> und Nenner der 1. Ableitung achten muss?

Bei obigem f, ja.

> also in meinem
> Beispiel ist f(x) streng monoton fallend weil der Zähler
> der 1. Ableitung negativ ist .

        .... und der Nenner positiv.

>  
>
> wären Zähler und Nenner positiv, würde f(x) streng
> monoton steigen , oder ?  

Ja


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]