Momente bis Ordnung p < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:52 Mi 30.06.2010 | Autor: | jboss |
Aufgabe | a) Sei X eine stetige Zufallsvariable mit Dichte f. Weiterhin gebe es $M > 0, c > 0$ so, dass für ein $p [mm] \in \IN$ [/mm] und jedes $x$ mit $|x| [mm] \ge [/mm] M$ gilt:
$f(x) [mm] \le \frac{c}{|x|^{p+2}}$.
[/mm]
Zeige Sie, dass X alle Momente bis zur Ordnung $p$ besitzt, indem Sie [mm] $E(|X|^p) [/mm] < [mm] \infty$ [/mm] zeigen.
b) Sei X eine stetige Zufallsvariable mit Dichte f und es gebe $a, b [mm] \in \IR, [/mm] a < b$, so dass $f(x) = 0$ für $x [mm] \not\in \left[a,b\right]$.
[/mm]
Zeigen Sie: Für jedes $p [mm] \in \IN$ [/mm] existiert [mm] $E(X^p)$.
[/mm]
|
Guten Abend,
also der aktuelle Statistik-Übungszettel macht mir ganz schön zu schaffen.
Hier mal meine Ansätze zu Aufgabenteil a)
Hierbei bin ich mir nicht sicher inwiefern meine Abschätzung korrekt ist, da $f(x) [mm] \le \frac{c}{|x|^{p+2}}$ [/mm] ja nur für $|x| [mm] \ge [/mm] M$ gilt.
z.z. [mm] $E(|X|^p) [/mm] < [mm] \infty$
[/mm]
[mm] $E(|X|^p) [/mm] = [mm] \integral_{-\infty}^{\infty}{|x|^p \cdot f(x) dx} \le \integral_{-\infty}^{\infty}{\frac{c\cdot |x|^p}{|x|^{p+2}} dx} [/mm] = [mm] \dots$
[/mm]
Geht das so in Ordnung oder müsste ich das Integral in 3 Teilintegrale [mm] $-\infty$ [/mm] bis $-M$, $-M$ bis $M$ und $M$ bis [mm] $\infty$ [/mm] aufspalten?
Gruss
jboss
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:41 Mi 30.06.2010 | Autor: | dormant |
Hi!
> a) Sei X eine stetige Zufallsvariable mit Dichte f.
> Weiterhin gebe es [mm]M > 0, c > 0[/mm] so, dass für ein [mm]p \in \IN[/mm]
> und jedes [mm]x[/mm] mit [mm]|x| \ge M[/mm] gilt:
> [mm]f(x) \le \frac{c}{|x|^{p+2}}[/mm].
> Zeige Sie, dass X alle
> Momente bis zur Ordnung [mm]p[/mm] besitzt, indem Sie [mm]E(|X|^p) < \infty[/mm]
> zeigen.
>
> b) Sei X eine stetige Zufallsvariable mit Dichte f und es
> gebe [mm]a, b \in \IR, a < b[/mm], so dass [mm]f(x) = 0[/mm] für [mm]x \not\in \left[a,b\right][/mm].
>
> Zeigen Sie: Für jedes [mm]p \in \IN[/mm] existiert [mm]E(X^p)[/mm].
>
>
> Guten Abend,
> also der aktuelle Statistik-Übungszettel macht mir ganz
> schön zu schaffen.
> Hier mal meine Ansätze zu Aufgabenteil a)
> Hierbei bin ich mir nicht sicher inwiefern meine
> Abschätzung korrekt ist, da [mm]f(x) \le \frac{c}{|x|^{p+2}}[/mm]
> ja nur für [mm]|x| \ge M[/mm] gilt.
>
> z.z. [mm]E(|X|^p) < \infty[/mm]
>
> [mm]E(|X|^p) = \integral_{-\infty}^{\infty}{|x|^p \cdot f(x) dx} \le \integral_{-\infty}^{\infty}{\frac{c\cdot |x|^p}{|x|^{p+2}} dx} = \dots[/mm]
>
> Geht das so in Ordnung oder müsste ich das Integral in 3
> Teilintegrale [mm]-\infty[/mm] bis [mm]-M[/mm], [mm]-M[/mm] bis [mm]M[/mm] und [mm]M[/mm] bis [mm]\infty[/mm]
> aufspalten?
Du musst die drei Integrale abschätzen. Bei dem mittleren, von -M bis M, benutzst du, dass [mm] |x|\le [/mm] M ist.
> Gruss
> jboss
>
Grüße,
dormant
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:19 Do 01.07.2010 | Autor: | dormant |
Hi!
> Hallo dormant,
> ich glaube jetzt hab ich es
> Also zu a)
>
>
> [mm][/mm]
> [mm]E(|X|^p)[/mm] = [mm]\integral_{-\infty}^{\infty}{|x|^p \cdot f(x) dx}[/mm]
>
> = [mm]\integral_{-\infty}^{-M}{|x|^p \cdot f(x) dx}[/mm] +
> [mm]\integral_{-M}^{M}{|x|^p \cdot f(x) dx}[/mm] +
> [mm]\integral_{M}^{\infty}{|x|^p \cdot f(x) dx}[/mm]
>
> [mm]\le \integral_{-\infty}^{-M}{\frac{|x|^p \cdot c}{|x|^{p+2}} dx}[/mm]
> + [mm]\integral_{-M}^{M}{M^p \cdot f(x) dx}[/mm] +
> [mm]\integral_{M}^{\infty}{\frac{|x|^p \cdot c}{|x|^{p+2}} dx}[/mm]
>
> = c [mm]\cdot \integral_{-\infty}^{-M}{\frac{1}{|x|^2} dx}[/mm] +
> [mm]\integral_{-M}^{M}{M^p \cdot f(x) dx}[/mm] + c [mm]\cdot \integral_{M}^{\infty}{\frac{1}{|x|^2} dx}[/mm]
Bisher alles prima. Hier wird's tricky. Ich würde schreiben:
= [mm] \integral_{-M}^{M}{M^p f(x)dx} [/mm] + [mm] 2c\integral_{M}^{\infty}{\frac{1}{x^2} dx}
[/mm]
da das linke und rechte Integral gleich sind und bei dem rechten kannst du den Betrag untderdrücken, da deine Integrationsvariable positiv ist (von M bis b). Jetzt kannst du die Stammfunktion bilden, wie du gemacht hast. Mit den Betragsstrichen drin, wäre es eine andere, d.h. ab hier ist es falsch:
> = [mm]c\cdot \limes_{b \rightarrow -\infty} \left[ -\frac{1}{x}\right]_{b}^{-M}[/mm]
> + [mm]c\cdot \limes_{b \rightarrow \infty} \left[ -\frac{1}{x}\right]_{M}^{b}[/mm]
> + [mm]M^p \cdot \integral_{-M}^{M}{f(x) dx}[/mm]
>
> = [mm]c\cdot \limes_{b \rightarrow -\infty} \left[ \frac{1}{M} + \frac{1}{b}\right][/mm]
> + [mm]c\cdot \limes_{b \rightarrow \infty} \left[ -\frac{1}{b} + \frac{1}{M}\right][/mm]
> + [mm]M^p \cdot \integral_{-M}^{M}{f(x) dx}[/mm]
>
> = [mm]\frac{2 \cdot c}{M}[/mm] + [mm]M^p \cdot \integral_{-M}^{M}{f(x) dx}[/mm]
>
> [mm]\le \frac{2 \cdot c}{M}[/mm] + [mm]M^p \cdot \underbrace{\integral_{-\infty}^{\infty}{f(x) dx}}_{= 1}[/mm]
>
> = [mm]\frac{2 \cdot c}{M}[/mm] + [mm]M^p[/mm]
>
> < [mm]\infty[/mm]
> [mm][/mm]
>
> So, hoffentlich hab ich da nicht irgendwo nen dicken Fehler
> eingebaut
Das ändert aber nichts an der Aussage, dass es intbar ist.
> zu b)
> Meine Idee hier ist die Abschätzung [mm]|x|^p \le (max{|b|, |a|})^p[/mm]
> [mm][/mm]
OK.
> [mm]E(|X|^p)[/mm] = [mm]\integral_{-\infty}^{\infty}{|x|^p f(x) dx}[/mm] =
> [mm]\integral_{a}^{b}{|x|^p f(x) dx} \le \integral_{a}^{b}{(\text{max}(|a|, |b|))^p f(x) dx}[/mm]
> = [mm](\text{max}(|a|, |b|))^p \integral_{a}^{b}{f(x) dx} \le (\text{max}(|a|, |b|))^p \integral_{-\infty}^{\infty}{f(x) dx}[/mm]
> = [mm](\text{max}(|a|, |b|))^p[/mm] < [mm]\infty[/mm]
> [mm][/mm]
Passt. Du kannst sogar gliech schreiben, dass sich f zwischen a und b zu 1 integriert, die Ungleichung (was eigentlich eine Gleichung ist) brauchst du nicht.
> Wäre toll, wenn sich das nochmal jemand ansehen könnte.
> Bin für alle Antworten dankbar!
>
> Gruss
> jboss
>
>
Grüße,
dormant
|
|
|
|