matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMöbiustransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Möbiustransformation
Möbiustransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möbiustransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 So 28.06.2009
Autor: tynia

Aufgabe
Bestimmen Sie eine Möbiustransformation S, durch welche die Menge

G := { z ∈ [mm] \IC [/mm] : |z − 1| > 1 , |z − 3| < 3 }

auf {w ∈ [mm] \IC [/mm] : 0 < Rew < 1 } abgebildet wird. Ist dieses S eindeutig bestimmt?

Hallo. Ich weiß bei dieser Aufgabe leider nicht, wie ich diese Möbiustransformation bestimmen soll. Die Zeichnung dazu habe ich vestanden. Vielleicht kann m ir hier jemand weiterhelfen. Danke schonmal.

Das ist die Zeichnung dazu:

[Dateianhang nicht öffentlich]

Ich weiß dazu nur, dass sich die beiden Kreise K1 und K2, die den Rand von G bilden, nur im Punkt 0 schneiden, die beiden S(G) berandenden Geraden nur im Punkt 1. Daher muss S(0) = [mm] \infty [/mm] gelten.

Mehr fällt mir dazu nicht ein. Bin über jede Hilfe dankbar.

LG

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Möbiustransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 07:29 Di 30.06.2009
Autor: Leopold_Gast

Machen wir für [mm]S[/mm] den Ansatz

[mm]S(z) = \frac{pz + q}{rz + s}[/mm]

mit komplexen Parametern [mm]p,q,r,s[/mm], für die [mm]ps-qr \neq 0[/mm] gilt. Wäre nun [mm]s \neq 0[/mm], so würde [mm]S(0) = \frac{q}{s} \in \mathbb{C}[/mm] gelten. Das kann aber nicht sein, denn das gesuchte [mm]S[/mm] muß [mm]S(0) = \infty[/mm] erfüllen. Denn die beiden Kreise haben 0 als Punkt gemeinsam und müssen durch [mm]S[/mm] auf die beiden den Streifen begrenzenden Geraden abgebildet werden. Die Geraden schneiden sich aber in [mm]\infty[/mm]. Somit folgt: [mm]s = 0[/mm], also

[mm]S(z) = \frac{pz + q}{rz} = \frac{p}{r} + \frac{q}{r} \cdot \frac{1}{z} = \frac{q}{r} \cdot \left( \frac{1}{z} + \frac{p}{q} \right)[/mm]

Mit den Umbenennungen [mm]\lambda = \frac{q}{r}, c = \frac{p}{q}[/mm] folgt für [mm]S[/mm] der Ansatz

[mm]S(z) = \lambda \left( \frac{1}{z} + c \right)[/mm]

Nach der Abbildung [mm]z \mapsto \frac{1}{z}[/mm] werden also noch die Translation [mm]z \mapsto z + c[/mm] und die Drehstreckung [mm]z \mapsto \lambda z[/mm] ausgeführt.

Was macht zunächst [mm]z \mapsto \frac{1}{z}[/mm]? Wegen der Kreistreue betrachten wir drei Punkte des Kreises um 1 vom Radius 1:

[mm]0 \mapsto \infty \, , \ \ 2 \mapsto \frac{1}{2} \, , \ \ 1 + \operatorname{i} \mapsto \frac{1}{2} - \frac{1}{2} \operatorname{i}[/mm]

Das Bild des Kreises ist also die zur imaginären Achse parallele Gerade durch [mm]\frac{1}{2}[/mm].

Dann drei Punkte des Kreises um 3 vom Radius 3:

[mm]0 \mapsto \infty \, , \ \ 6 \mapsto \frac{1}{6} \, , \ \ 3 + 3 \operatorname{i} \mapsto \frac{1}{6} - \frac{1}{6} \operatorname{i}[/mm]

Das Bild des zweiten Kreises ist also die zur imaginären Achse parallele Gerade durch [mm]\frac{1}{6}[/mm]. Wegen [mm]3 \mapsto \frac{1}{3}[/mm] wird also das vorgegebene Gebiet [mm]G[/mm] durch die Abbildung [mm]z \mapsto \frac{1}{z}[/mm] auf das Innere des Streifens zwischen den beiden oben beschriebenen Geraden abgebildet.

Jetzt ziehe diesen Streifen durch eine Translation [mm]z \mapsto z + c[/mm] nach links, so daß die linke Begrenzungsgerade auf die imaginäre Achse fällt. Dann strecke ihn durch [mm]z \mapsto \lambda z[/mm] mit einem reellen [mm]\lambda[/mm], damit er die richtige Breite bekommt.

Bezug
                
Bezug
Möbiustransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Do 02.07.2009
Autor: tynia

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]