matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeModulo Äquivalenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Modulo Äquivalenz
Modulo Äquivalenz < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Di 06.11.2007
Autor: MrPink

Moin Leute, ich habe eine Frage, und zwar warum folgenende Äquivalenz gilt:

[mm] w^{r} \equiv 1 \mod p \Leftrightarrow ur \equiv 0 \mod p-1 [/mm]
Wobei p eine Primzahl ist, ein g ein Generator für F*(p). Weiter lässt sich dann das Element w erzeugen durch [mm] w \equiv g^{u} \mod p [/mm]. Dann gilt auch noch n = p*q , wobei auch q eine Primzahl ist, und es gilt:
[mm] w^{r} \equiv 1 \mod n [/mm]

Aber warum gilt das ? Hat vielleicht der Chinesische Restklassensatz was damit zu Tun ?

Ich komme nur auf
[mm] w^{r} \equiv 1 \mod p \Leftrightarrow g^{ur} \equiv 1 \mod p [/mm]
aber nicht weiter, kann mir jemand helfen ?


        
Bezug
Modulo Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 06.11.2007
Autor: statler

Guten Morgen!

> Ich komme nur auf
> [mm]w^{r} \equiv 1 \mod p \Leftrightarrow g^{ur} \equiv 1 \mod p[/mm]
>  
> aber nicht weiter, kann mir jemand helfen ?

Naja, g soll ein Generator in einer Gruppe mit p-1 Elementen sein. Welche Potenzen von g sind dann gleich dem neutralen Element?
(Antwort: Die Vielfachen der Gruppenordnung.)

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]