matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationMittelwertsatz der Integral.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Mittelwertsatz der Integral.
Mittelwertsatz der Integral. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz der Integral.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 22.06.2005
Autor: Amarradi

Hallo
ich hab die (triviale) Funktion [mm] 3*x^2 [/mm] im Intervall von [mm] [-\wurzel[3]{2}, \wurzel[3]{2}] [/mm] und soll diese mit Hilfe des Mittelwertsatzes der Integralrechung lösen.
Könnte das bitte mal einer nachrechung und true oder false posten.
Danke.
Hier nun meine Lösung

M(f) = [mm] \bruch{1}{( \wurzel[3]{2}+ \wurzel[3]{2})}* \integral_{-\wurzel[3]{2}}^{\wurzel[3]{2}} {3*x^2 dx} [/mm]

da habe ich dann [mm] \bruch{1}{2*\wurzel[3]{2}} [/mm] * [mm] x^3 [/mm] in den Grenzen von [mm] -\wurzel[3]{2} [/mm] und [mm] \wurzel[3]{2} [/mm]

das macht bei mir [mm] \bruch{1}{2*\wurzel[3]{2}} [/mm] * [mm] [(\wurzel[3]{2})^3 [/mm] - [mm] (-\wurzel[3]{2})^3] [/mm]

Das Ergebnis von mir lautet:

[mm] \bruch{2}{\wurzel[3]{2}} [/mm]
wenn das falsch sein sollte bitte ich um die richtige Lösung, wenns ginge

        
Bezug
Mittelwertsatz der Integral.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Mi 22.06.2005
Autor: Zwerglein

Hi, Amarradi,

>  ich hab die (triviale) Funktion [mm]3*x^2[/mm] im Intervall von
> [mm][-\wurzel[3]{2}, \wurzel[3]{2}][/mm] und soll diese mit Hilfe
> des Mittelwertsatzes der Integralrechung lösen.
>  Könnte das bitte mal einer nachrechung und true oder false
> posten.
>  Danke.
>  Hier nun meine Lösung
>  
> M(f) = [mm]\bruch{1}{( \wurzel[3]{2}+ \wurzel[3]{2})}* \integral_{-\wurzel[3]{2}}^{\wurzel[3]{2}} {3*x^2 dx}[/mm]
>  
> da habe ich dann [mm]\bruch{1}{2*\wurzel[3]{2}}[/mm] * [mm]x^3[/mm] in den
> Grenzen von [mm]-\wurzel[3]{2}[/mm] und [mm]\wurzel[3]{2}[/mm]
>  
> das macht bei mir [mm]\bruch{1}{2*\wurzel[3]{2}}[/mm] *
> [mm][(\wurzel[3]{2})^3[/mm] - [mm](-\wurzel[3]{2})^3][/mm]
>  
> Das Ergebnis von mir lautet:
>  
> [mm]\bruch{2}{\wurzel[3]{2}}[/mm]
> wenn das falsch sein sollte bitte ich um die richtige
> Lösung, wenns ginge

Kann in der Rechnung keinen Fehler finden!

Ich bin nur am Überlegen, was eigentlich mit dem Aufgabentext gemeint ist (siehe oben):

> und soll diese mit Hilfe
> des Mittelwertsatzes der Integralrechung lösen.

Was Du ausgerechnet hast, ist ja der "lineare Mittelwert", also die Höhe eines Rechtecks mit der Breite [mm] 2*\wurzel[3]{2}, [/mm] das den gleichen Flächeninhalt hat wie die Fläche, die zwischen dem Graphen der Funktion und der x-Achse in den vorgegebenen Grenzen liegt.
War's so gemeint?

Bezug
                
Bezug
Mittelwertsatz der Integral.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:55 Fr 24.06.2005
Autor: Amarradi

So stand es in der Aufgabe einer alten Prüfung:
"Berechnen Sie folgende Funktion mit Hilfe des Mittelwertsatzes."

Danke für die Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]