matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesMittelpunkt Kreisfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - Mittelpunkt Kreisfunktion
Mittelpunkt Kreisfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelpunkt Kreisfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Di 02.03.2010
Autor: maniac

Aufgabe
Auf dem Foto sehen Sie den Berliner Ostbahnhof. Für die 30m breite und 8m hohe Front wird eine neue Verglasung aus Sicherheitsglas geplant. Aus statischen Gründen wird vorher die Last durch das neue Glas abgeschätzt. Dazu wird zunächst die Größe der gesamten Fassadenfläche zwischen der waagerechten Basis und dem gekrümmten oberen Rand berechnet.

e) Ein anderer Statiker möchte den Bahnhofsbogen als einen Kreisbogen darstellen, der dieselben Achsenschnittpunkte wie der Graph von f hat. Bestimmen Sie die Koordinaten des Kreismittelpunktes.

Wir haben noch im Unterricht besprochen das wir mit den drei Punkten (0/8), (15/0) und (-15/0) und der Kreisgleichung [mm] r^{2}=x^{2} [/mm] + [mm] (y-y_{m})^{2}, [/mm] mithilfe eines Gleichungssystems auf die Lösung kommen können.

Meine Frage ist wie ich das machen soll, da ich bei meinen Versuchen immer auf totalen Nonsense gekommen bin.

        
Bezug
Mittelpunkt Kreisfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 02.03.2010
Autor: Al-Chwarizmi


> Auf dem Foto sehen Sie den Berliner Ostbahnhof. Für die
> 30m breite und 8m hohe Front wird eine neue Verglasung aus
> Sicherheitsglas geplant. Aus statischen Gründen wird
> vorher die Last durch das neue Glas abgeschätzt. Dazu wird
> zunächst die Größe der gesamten Fassadenfläche zwischen
> der waagerechten Basis und dem gekrümmten oberen Rand
> berechnet.
>  
> e) Ein anderer Statiker möchte den Bahnhofsbogen als einen
> Kreisbogen darstellen, der dieselben Achsenschnittpunkte
> wie der Graph von f hat. Bestimmen Sie die Koordinaten des
> Kreismittelpunktes.
>  Wir haben noch im Unterricht besprochen das wir mit den
> drei Punkten (0/8), (15/0) und (-15/0) und der
> Kreisgleichung [mm]r^{2}=x^{2}[/mm] + [mm](y-y_{m})^{2},[/mm] mithilfe eines
> Gleichungssystems auf die Lösung kommen können.
>  
> Meine Frage ist wie ich das machen soll, da ich bei meinen
> Versuchen immer auf totalen Nonsense gekommen bin.


Hallo maniac,

es geht hier offenbar einfach um einen Kreisbogen bzw.
um ein Kreissegment mit der Sehnenlänge 30 und der
Höhe 8. Wegen der offensichtlichen Symmetrie muss der
Kreismittelpunkt auf der (negativen) y-Achse liegen.
Du hast also nur die zwei Unbekannten r und [mm] y_m [/mm] .
Setze die Koordinatenpaare der beiden Punkte (0/8), (15/0)
in die Gleichung ein, und du hast zwei Gleichungen,
aus denen du r (positiv) und [mm] y_m [/mm] (negativ) berechnen
kannst. Alternativ kannst du dir überlegen, wie man den
Umkreis eines Dreiecks konstruiert. Daraus lässt
sich auch eine Berechnungsmethode für [mm] y_m [/mm] ableiten.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]