matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMit Eigenwerten die Eigenvekto
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Mit Eigenwerten die Eigenvekto
Mit Eigenwerten die Eigenvekto < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mit Eigenwerten die Eigenvekto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Do 22.01.2009
Autor: pioneer

Aufgabe
Gegeben ist die Matrix:
[mm] \pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1} [/mm]
Man berechne die Eigenwerte und Eigenvektoren.

Hallo!

Die Eigenwerte zu berechnen war nicht sonderlich schwer. Ich habe 1, 1, 3 herausbekommen. Das habe ich auch mit einem Tool im Internet kontrolliert und es stimmt.
Wenn ich nun allerdings die Eigenvektoren berechnen möchte gehe ich folgendermaßen vor:
[mm] \pmat{ 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda} [/mm]
[mm] -\lambda [/mm] = 1
[mm] \pmat{ 2-1 & 1 & 0 \\ 1 & 2-1 & 0 \\ 0 & 0 & 1-1} [/mm]
ist gleich
[mm] \pmat{ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0} [/mm]
Ich weiß ich stehe jetzt voll auf der Leitung aber wie kann ich das nun berechnen? Allerdings sitzte ich nun schon seit Stunden dabei und komme einfach nicht dahinter.

lg
pioneer

        
Bezug
Mit Eigenwerten die Eigenvekto: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Do 22.01.2009
Autor: schachuzipus

Hallo pineer,

> Gegeben ist die Matrix:
>  [mm]\pmat{ 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1}[/mm]
>  Man berechne
> die Eigenwerte und Eigenvektoren.
>  Hallo!
>  
> Die Eigenwerte zu berechnen war nicht sonderlich schwer.
> Ich habe 1, 1, 3 herausbekommen. [ok]  Das habe ich auch mit
> einem Tool im Internet kontrolliert und es stimmt.
>  Wenn ich nun allerdings die Eigenvektoren berechnen möchte
> gehe ich folgendermaßen vor:
>  [mm]\pmat{ 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda}[/mm]
>  
> [mm]-\lambda[/mm] = 1
>  [mm]\pmat{ 2-1 & 1 & 0 \\ 1 & 2-1 & 0 \\ 0 & 0 & 1-1}[/mm]
>  ist
> gleich
>  [mm]\pmat{ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0}[/mm] [ok]
>  Ich weiß ich
> stehe jetzt voll auf der Leitung aber wie kann ich das nun
> berechnen? Allerdings sitzte ich nun schon seit Stunden
> dabei und komme einfach nicht dahinter.

Du musst den Kern dieser Matrix [mm] $(A-\lambda\cdot{}\mathbb{E}_3)$ [/mm] berechnen, also die Lösungsgesamtheit der Matrixgleichung [mm] $(A-\lambda\cdot{}\mathbb{E}_3)\cdot{}\vec{x}=\vec{0}$ [/mm]

bzw. ausgeschrieben [mm] $\pmat{ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0}\cdot{}\vektor{x_1\\x_2\\x_3}=\vektor{0\\0\\0}$ [/mm]

Dazu bringe mal die Matrix [mm] $\pmat{ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0}$ [/mm] in Zeilenstufenform, ist ja nicht mehr viel Arbeit ;-)

Du bekommst 2 Nullzeilen, also bleibt eine Gleichung in den 3 Unbekannten [mm] $x_1,x_2,x_3$, [/mm] also hast du 2 frei wählbare Parameter, setze [mm] $x_3:=t, x_2:=s$ [/mm] mit [mm] $s,t\in\IR$ [/mm] und bestimme den Wert für [mm] $x_1$ [/mm] in Abh. von $s,t$

Ein Lösungsvektor [mm] $\neq\vektor{0\\0\\0}$ [/mm] aus der Lösungsgesamtheit, also aus dem Kern ist dann ein Eigenvektor.

Hier ist der Kern gar 2-dimensional, also wird es 2 (linear unabh.) Eigenvektoren geben ...


LG

schachuzipus

>  
> lg
>  pioneer


Bezug
                
Bezug
Mit Eigenwerten die Eigenvekto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Do 22.01.2009
Autor: pioneer

Hallo schachuzipus!

Danke für deine schnelle Antwort!
Ich habe bereits versucht die Matrix auf Zeilensufenform zu bringen. Wenn ich das -1 fache der ersten Zeile zur zweiten addiere erhalte ich die Matrix:
[mm] \pmat{ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm]

und das Gleichungssystem:
[mm] \pmat{ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 } [/mm] * [mm] \pmat{ x_{1} \\ x_{2} \\ x_{3} } [/mm] = [mm] \pmat{ 0 \\ 0 \\ 0 } [/mm]

Also ist die einzige Gleichung die ich habe:
[mm] x_{1} [/mm] + [mm] x_{2} [/mm] = 0

Ich wähle [mm] x_{2} [/mm] = s also [mm] x_{1} [/mm] = -s
Aber was ist nun mit [mm] x_{3}? [/mm]
Auch das mit dem 2 dimensionalen Kern und den 2 linear unabhängigen Eingevektoren habe ich nicht ganz verstanden.

lg
pioneer

Bezug
                        
Bezug
Mit Eigenwerten die Eigenvekto: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Do 22.01.2009
Autor: MathePower

Hallo pioneer,

> Hallo schachuzipus!
>  
> Danke für deine schnelle Antwort!
>  Ich habe bereits versucht die Matrix auf Zeilensufenform
> zu bringen. Wenn ich das -1 fache der ersten Zeile zur
> zweiten addiere erhalte ich die Matrix:
>  [mm]\pmat{ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm]
>  
> und das Gleichungssystem:
>  [mm]\pmat{ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 }[/mm] * [mm]\pmat{ x_{1} \\ x_{2} \\ x_{3} }[/mm]
> = [mm]\pmat{ 0 \\ 0 \\ 0 }[/mm]
>  
> Also ist die einzige Gleichung die ich habe:
>  [mm]x_{1}[/mm] + [mm]x_{2}[/mm] = 0
>  
> Ich wähle [mm]x_{2}[/mm] = s also [mm]x_{1}[/mm] = -s
>  Aber was ist nun mit [mm]x_{3}?[/mm]


[mm]x_{3}[/mm] ist frei wählbar, da Du aus

[mm]0*x_{1}+0*x_{2}+0*x_{3}=0[/mm]

diese Variable nicht bestimmen kannst.

Lösung ist dann:
[mm]x_{1}=-s[/mm]
[mm]x_{2}=s[/mm]
[mm]x_{3}=t[/mm]


>  Auch das mit dem 2 dimensionalen Kern und den 2 linear
> unabhängigen Eingevektoren habe ich nicht ganz verstanden.
>  
> lg
>  pioneer


Gruß
MathePower

Bezug
                                
Bezug
Mit Eigenwerten die Eigenvekto: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Do 22.01.2009
Autor: pioneer

Danke für deine Antwort!

Wie komme ich nun aber von -s, s, t auf den Eigenvektor bzw. die beiden Eigenvektoren. Laut
http://www.arndt-bruenner.de/mathe/scripts/eigenwert.htm
müssten die beiden Eigenvektoren
[mm] \vektor{-1 \\ 1 \\ 0} [/mm] und
[mm] \vektor{0 \\ 0 \\ 1} [/mm]
sein.

lg
pioneer

Bezug
                                        
Bezug
Mit Eigenwerten die Eigenvekto: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 22.01.2009
Autor: schachuzipus

Hallo nochmal,

ich habe doch ausdrücklichst geschrieben, dass ein Eigenvektor ein Vektor aus dem Kern ist, der nicht der Nullvektor ist, also ein nicht-trivialer Vektor aus der Lösungsgesamtheit der entsprechenden Matrixgleichung.

Schreibe doch mal die allg. Lösung des obigen LGS hin

So ein allg. Lösungsvektor hat die Gestalt [mm] $\vektor{x_1\\x_2\\x_3}=\vektor{-a\\a\\b}=\vektor{-a\\a\\0}+\vektor{0\\0\\b}=a\cdot{}\vektor{-1\\1\\0}+b\cdot{}\vektor{0\\0\\1}$ [/mm] mit [mm] $a,b\in\IR$ [/mm]


Also ist der Kern der Matrix [mm] $A-1\cdot{}\mathbb{E}_3$ [/mm] bzw. die Lösungsgesamtheit der entsprechenden Matrixgleichung der Spann

[mm] $\left\langle\vektor{-1\\1\\0},\vektor{0\\0\\1}\right\rangle$ [/mm]

Ein Vektor [mm] \neq\vec{0} [/mm] ist ein Eigenvektor (zum Eigenwert 1), etwa der erste (für a=1, b=0) und der zweite (für a=0, b=1)

Also hast du 2 linear unabh. Eigenvektoren

LG

schachuzipus

Bezug
                                                
Bezug
Mit Eigenwerten die Eigenvekto: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Do 22.01.2009
Autor: pioneer

Danke für eure Gedult. Ich glaube nun habe ich es verstanden. Vielen Dank.

lg
pioneer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]