matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMinkowskiraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Minkowskiraum
Minkowskiraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minkowskiraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:10 Do 11.05.2006
Autor: Sherin

Aufgabe
Sei V = [mm] \IR^{4} [/mm] und sei die Bilinearform <-,->: V x V [mm] \to [/mm] IR gegeben durch
<  [mm] \pmat{ x_{0}\\ x_{1}\\ x_{2}\\ x_{3} }, \pmat{ x_{0}'\\ x_{1}'\\ x_{2}'\\ x_{3}' } [/mm] > = [mm] -x_{0}x_{0}' [/mm] + [mm] x_{1}x_{1}' [/mm] + [mm] x_{2}x_{2}' [/mm] + [mm] x_{3}x_{3}'. [/mm]

Ein Vektor v [mm] \in [/mm] V mit v  [mm] \not= [/mm] 0 heißt
- lichtartig, wenn <v,v> = 0
- zeitartig, wenn <v,v> < 0
- raumartig, wenn <v,v> > 0

Sei U  [mm] \subset [/mm] V ein nichttrivialer Unterraum, der zeitartig ist, d.h. alle Vektoren in u [mm] \in [/mm] U \ {0} sind zeitartig. Beweisen Sie, dass U Dimension 1 hat.  

Hallo ihr Lieben!
Ich sitze gerad an diesem Beweis und komme irgendwie gar net voran.
Was ich mir bis jetzt überlegt hab:

Also die Behauptung ist ja: <u,u> < 0  [mm] \Rightarrow [/mm] U hat Dimension 1.
Das würd ja dann heißen, dass die Basis auf einem Vektor besteht. Wenn ich mir jetzt ein u aus U nehme, dann würde meine Ungleichung ja so ausehen:
[mm] -u_{1}^{2} [/mm] + [mm] u_{2}^{2} [/mm] + [mm] u_{3}^{2} [/mm] + [mm] u_{4}^{2} [/mm] < 0 [mm] \forall [/mm] u [mm] \in [/mm] U.
Aber ich sehe jetzt noch gar kein zusammenhang zwischen dieser ungleichung und der dimension von diesem Unterraum.

Wäre euch unendlich dankbar, wenn mir einer auf die Sprünge helfen würde!

Lg,
Sherin

        
Bezug
Minkowskiraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 13.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]