matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisMinimum und Orthogonalität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Minimum und Orthogonalität
Minimum und Orthogonalität < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum und Orthogonalität: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 24.04.2010
Autor: Snarfu

Aufgabe
Sei X ein Hilbertraum, U [mm] \subset [/mm] X ein Unterraum von X und x [mm] \in [/mm] X , x [mm] \notin [/mm] U . Man zeige:
[mm] u_0 [/mm] ist genau dann eine Lösung von [mm] min_{u \in U} \left|\left|x-u\right|\right| [/mm] wenn [mm] (x-u_0) [/mm] orthogonal zu U ist.

Hallo Forum,

Ich komme bei obriger Aufgabe nicht vorwärts. Ich habe versucht mit einer Orthonormalbasis [mm] \left\{e_1,...\right\} [/mm] der Lage Herr zu werden aber keiner der Ansätze die ich damit versucht habe hat irgendwohin geführt.
Es wäre schön wenn jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Vielen Dank und Grüße!

        
Bezug
Minimum und Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 24.04.2010
Autor: SEcki


> Es wäre schön wenn jemand helfen könnte.

Falls es die Bedinung erfüllt: [m]||x-u||^2=||u-u_0||^2+||x-u_0||^2[/m]

SEcki

Bezug
                
Bezug
Minimum und Orthogonalität: Lösung
Status: (Frage) beantwortet Status 
Datum: 11:33 So 25.04.2010
Autor: Snarfu

Vielen Dank, ich würde das dann so schreiben:

[mm] "\Rightarrow" [/mm] Sei [mm] u_0 \in [/mm] U mit [mm] =0 \forall u\inU [/mm]
Dann ist:
[mm] \|x-u\|^2=\|x-u_0+u_0-u\|^2=\|x-u_0\|^2+\|u_0-u\|^2+\underbrace{2}_{=0\ da\ (u_0-u)\in U} [/mm]
[mm] \Rightarrow\ \|x-u\| [/mm] wird minimal für [mm] u=u_0 [/mm]
und
[mm] "\Leftarrow" [/mm] Sei [mm] \|x-u_0\|\leq\|x-u\| \forall u\inU [/mm]

[mm] \Rightarrow\ \|x-u_0\|^2\leq\|x-u_0\|^2+\|u_0-u\|^2+2 [/mm]
[mm] 0\leq \|x-u_0\|^2+\|u_0-u\|^2+2 [/mm]
[mm] \Leftrightarrow u=u_0 [/mm]  und [mm] (x-u_0) [/mm] steht senkrecht auf allen [mm] u\in [/mm] U

Gäbe es da etwas zu beanstanden? Vielen Dank und beste Grüße

Bezug
                        
Bezug
Minimum und Orthogonalität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 So 25.04.2010
Autor: SEcki


> [mm]0\leq \|x-u_0\|^2+\|u_0-u\|^2+2[/mm]

Ich wäre eher für [mm]0\leq \|u_0-u\|^2+2[/mm]. Wenn dann das SKP für einen Vektor u kleiner 0 ist, dann betrachte ich die Funktion [m]\lambda\mapsto \|u_0-\lambda*u\|^2+2[/m] - und zeige, dass sie irgendwo kleiner als 0 ist im Widerspruch zur Vorraussetzung.

> [mm]\Leftrightarrow u=u_0[/mm]  und [mm](x-u_0)[/mm] steht senkrecht auf
> allen [mm]u\in[/mm] U

Das sehe ich nicht wieso das gelten sollte.

SEcki

Bezug
                                
Bezug
Minimum und Orthogonalität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:07 Mo 26.04.2010
Autor: Snarfu

Ich stehe offensichtlich auf dem Schlauch. Wenn ich
[mm] 0\leq \|u_0-u\|^2+2 [/mm]

für [mm] [/mm] <0

umforme komme ich auf

[mm] 0\leq \|\lambda u-u_0\|^2-2\lambda [/mm]

und jetzt sehe ich nicht wie ich das weiter abschätzen könnte bzw. sehen das hier ein widerspruch ist.

Danke für die Geduld

Bezug
                                        
Bezug
Minimum und Orthogonalität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 28.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                        
Bezug
Minimum und Orthogonalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Mi 28.04.2010
Autor: Snarfu

Jetzt seh ich's.
Danke, saß offensichtlich auf den Augen.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]