matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Minimalpolynom
Minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Mo 26.06.2006
Autor: Pizzameister

Aufgabe
Es sei V ein endlich-dimensionaler K-Vektorraum, F € End(V) ein diagonalisierbarer Endomorphismus und a1,...,ar € K die paarweise verschiedenen Eigenwerte von F. Bestimmen sie das Minimalpolynom von F.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir einer sagen was ich da machen muss? Ich muss diese (und noch eine) Aufgabe bis donnerstag lösen und dann mündlich Vortragen sonst werde ich nicht zur Klausur zugelassen und mein Problem ist das ich im moment im völligen überstreß stehe und einfach nicht mehr weiter weis. Ich wäre sehr sehr sehr dankbar wenn mir einer helfen könnte (auch wenn meine Frage ohne eigenen Ansatz eigentlich gegen die Forenregeln verstößt).

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mo 26.06.2006
Autor: Hanno

Hallo Pizzamann.

Das Minimalpolynom ist das kleinste Polynom, das $f$ als Nullstelle besitzt. Da nach Cayley-Hamilton $f$ Nullstelle von [mm] $\chi_f$ [/mm] ist, muss ferner [mm] $\mu_f$ [/mm] ein Teiler von [mm] $\chi_f$ [/mm] sein.

Weiterhin ist bekannt, dass die Eigenwerte von $f$ genau die Nullstellen von [mm] $\chi_f$ [/mm] sind. Zuletzt musst du noch wissen, dass für einen Eigenwert [mm] $\lambda$ [/mm] die Dimension des Eigenraumes zum Eigenwert [mm] $\lambda$ [/mm] stets kleiner gleich der Vielfachheit der Nullstelle von [mm] $\lambda$ [/mm] in [mm] $\chi_f$ [/mm] ist. Da $f$ diagonalisierbar ist, muss die Dimension der Eigenräume der Dimension von $V$ entsprechen. Daraus kannst du bereits einen "großen" Teiler von [mm] $\chi_f$ [/mm] bestimmen und über Gradvergleich sogar das Polynom [mm] $\chi_f$ [/mm] bestimmen.

Nun solltest du weiter wissen, dass jede Nullstelle von [mm] $\chi_f$ [/mm] auch Nullstelle von [mm] $\mu_f$ [/mm] ist. Als Minimalpolynom brauchst du also nur solche zu testen, die alle Linearfaktoren von [mm] $\chi_f$ [/mm] als Teiler besitzen. Prüfe in deinem Fall nun das einfachste aller solcher Polynome auf die Frage, ob es $f$ als Nullstelle besitzt.

Es ist hier praktisch, wenn du anstatt $f$ mit einer Darstellungsmatrix von $f$ rechnest.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]