matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMinimaler Abstand Fläche/Punkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Minimaler Abstand Fläche/Punkt
Minimaler Abstand Fläche/Punkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimaler Abstand Fläche/Punkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Mo 14.06.2010
Autor: Schei_y

Aufgabe
Welcher Punkt der Fläche z = [mm] x^{2} [/mm] + [mm] y^{2} [/mm] liegt dem Punkt (1; 1; 0.5) am nächsten?

Der Abstand zwischen Punkt und Fläche muss minimiert werden. Als Abstandsfunktion habe ich f(x,y,z) = [mm] (x-1)^{2} [/mm] + [mm] (y-1)^{2} [/mm] + [mm] (z-0.5)^{2}. [/mm] Über die Lagrange Multiplikatoren grad f = [mm] \lambda [/mm] grad g (g ist die Gleichung der Fläche) habe ich 3 verschiedene Werte für x, y und z berechnet.
[mm] x_{1} [/mm] = [mm] \bruch{1}{2} 2^{\bruch{1}{3}} [/mm]
[mm] y_{1} [/mm] = [mm] \bruch{1}{2} 2^{\bruch{1}{3}} [/mm]
[mm] z_{1} [/mm] = [mm] \bruch{1}{2} 2^{\bruch{2}{3}} [/mm]

[mm] x_{2} [/mm] = - [mm] \bruch{1}{\bruch{1}{2} 2^{\bruch{2}{3}} - \bruch{1}{2} i \wurzel{3} 2^{\bruch{2}{3}}} [/mm]
[mm] y_{2} [/mm] = - [mm] \bruch{1}{\bruch{1}{2} 2^{\bruch{2}{3}} - \bruch{1}{2} i \wurzel{3} 2^{\bruch{2}{3}}} [/mm]
[mm] z_{2} [/mm] = - [mm] \bruch{1}{4} 2^{\bruch{2}{3} + \bruch{1}{4} i \wurzel{3} 2^{\bruch{2}{3}}} [/mm]

[mm] x_{3} [/mm] = - [mm] \bruch{1}{\bruch{1}{2} 2^{\bruch{2}{3}} + \bruch{1}{2} i \wurzel{3} 2^{\bruch{2}{3}}} [/mm]
[mm] y_{2} [/mm] = - [mm] \bruch{1}{\bruch{1}{2}} 2^{\bruch{2}{3}} [/mm] + [mm] \bruch{1}{2} [/mm] i [mm] \wurzel{3} 2^{\bruch{2}{3}} [/mm]
[mm] z_{3} [/mm] = - [mm] \bruch{1}{4} 2^{\bruch{2}{3}} [/mm] - [mm] \bruch{1}{4} [/mm] i [mm] \wurzel{3} 2^{\bruch{2}{3}} [/mm]

Wie bestimme ich aus diesen 3 möglichen Extremstellen nun den Punkt mit dem Minimalen Abstand.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Minimaler Abstand Fläche/Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Mo 14.06.2010
Autor: reverend

Hallo Schei_y, [willkommenmr]

Macht die Aufgabe denn mit [mm] x,y,z\in\IC [/mm] überhaupt Sinn?

Grüße
reverend

Bezug
                
Bezug
Minimaler Abstand Fläche/Punkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mo 14.06.2010
Autor: Schei_y

wenn du so fragst wohl eher nicht ... dann kann ich die komplexen Lösungen ignorieren ... oder noch mal nachrechnen, ob die wirklich stimmen ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]