matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesMini-Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Mini-Beweis
Mini-Beweis < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mini-Beweis: Geometrische Reihe
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 11.06.2012
Autor: Sonnenschein123

Aufgabe
Ausgangssituation ist:

[mm] b_T=\bruch{1}{(1+\gamma)^T}*b_0+\bruch{defizit}{(1+\gamma)}*\summe_{\tau=0}^{T-1}\bruch{1}{(1+\gamma)^\tau} [/mm]

Nun die Aufgabenstellung:

Nutzen Sie nun die Tatsache, dass [mm] \summe_{\tau=0}^{T-1}\bruch{1}{(1+\gamma)^\tau}=\summe_{\tau=0}^{\infty}\bruch{1}{(1+\gamma)^\tau}-\summe_{\tau=T}^{\infty}\bruch{1}{(1+\gamma)^\tau}=[1-\bruch{1}{(1+\gamma)^T}] \summe_{\tau=0}^{\infty}\bruch{1}{(1+\gamma)^\tau} [/mm] und [mm] \summe_{\tau=1}^{\infty}\bruch{1}{(1+\gamma)^\tau}=\bruch{1}{\gamma}, [/mm] um zu zeigen, dass [mm] b_T=\bruch{1}{(1+\gamma)^T}*b_0+\bruch{defizit}{\gamma}*[1-\bruch{1}{(1+\gamma)^T}] [/mm]

Hallo,

also ich habe erstmal für mich einfach die Formel für die geometrische Reihe angewandt und dann komme ich sauber dahin.

Aber den Weg in der Aufgabenstellung kann ich nicht ganz nachvollziehen.

[mm] \summe_{\tau=1}^{\infty}\bruch{1}{(1+\gamma)^\tau}=\bruch{1}{\gamma} [/mm] habe ich verstanden, für [mm] \tau= [/mm] 0 kommt ja eh nur 1 raus, dann kann ich die Summe hinter der eckigen Klammer einfach mit [mm] \bruch{1}{\gamma} [/mm] ersetzen, oder?

Wenn ich dann wieder zu der kompletten Gleichung zurückgehe, habe ich doch aber [mm] \bruch{defizit}{(1+\gamma)}*\bruch{1}{\gamma}=\bruch{defizit}{(1+\gamma)*\gamma} [/mm] anstelle von [mm] \bruch{defizit}{\gamma}. [/mm]

Was ist das eigentlich für eine Methode, ist das nicht einfach auch die geometrische Reihe, nur halt erstmal weiterhin mit Summen ausgedrückt?

Wenn mir jemand antwortet, kann ich auch gerne noch schreiben, wie ich das genau mit der direkten Anwendung der geometrischen Reihe gemacht habe, da kürzt sich nämlich der Faktor [mm] (1+\gamma) [/mm] schön raus.

Vielen Dank im Voraus.

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Mini-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 11.06.2012
Autor: leduart

Hallo
auch ich verstehe nicht, warum das nicht einfach mit der summenformel der geom. Reihe gemacht werden soll. aber woher du das [mm] (1+\gamma) [/mm] unter dem Defizit her hast verstehe ich auch nicht.
gruss leduart

Bezug
                
Bezug
Mini-Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 11.06.2012
Autor: Sonnenschein123

Hi, das [mm] (1+\gamma) [/mm] ist ja im Nenner bei der Ursprungsgleichung. Die sollte zuvor hergeleitet werden. Da wird ja [mm] \bruch{defizit}{(1+\gamma)} [/mm] mit der Summe multipliziert.

Viele Grüsse

Bezug
                        
Bezug
Mini-Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mo 11.06.2012
Autor: leduart

Hallo
jetzt hab ich erst deinen Satz:
"
$ [mm] \summe_{\tau=1}^{\infty}\bruch{1}{(1+\gamma)^\tau}=\bruch{1}{\gamma} [/mm] $ habe ich verstanden, für $ [mm] \tau= [/mm] $ 0 kommt ja eh nur 1 raus, dann kann ich die Summe hinter der eckigen Klammer einfach mit $ [mm] \bruch{1}{\gamma} [/mm] $ ersetzen, oder?
das ist so falsch: Summe ab 1 ist [mm] 1/\gamma, [/mm] Summe ab 0 ist
[mm] 1/\gamma+1=(1+\gamma)/\gamma. [/mm] warum die das nicht gleich mit der Summe von 0 bis [mm] \infty [/mm] rechnen ist sehr unverständlich, aber manchmal sehen auch erfahrene leute den einfacheren Weg, z.b. deinen nicht, diesmal warst du eben besser als die Musterlösung! Glückwunsch!
Gruss leduart

Bezug
                                
Bezug
Mini-Beweis: Ganz herzlichen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Mo 11.06.2012
Autor: Sonnenschein123

Ach mei, klar +1. Natürlich. Danke sehr für den Hinweis.

Ganz herzlichen Dank für Deine Antworten. Sehr nett von Dir.

Viele Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]