MinMax-Rechnung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:57 Di 08.07.2014 | Autor: | Franks92 |
Aufgabe | Gegeben ist eine rechteckige Verglasung mit den Maßen 1,1m x 0,8m. An der rechten oberen Ecke ist beim Verladen ein Stück abgebrochen, a=10cm, b=11cm, Hypotenuse nicht bekannt. Der Glaser möchte nun aus der kaputten Verglasung ein größtmögliches Rechteck schneiden. Wie sind die Maße der neuen Verglasung? |
Hallo,
ich habe Probleme bei der Berechnung der Extremwertaufgabe. Ich habe mir überlegt, den Flächeninhalt des abgebrochene Stücks mittels Pythagorasfunktion auszurechnen. Nun habe ich ja den Flächeninhalt der kaputten Verglasung. Trotzdessen komme ich auf keine Zielfunktion und Nebenfunktion um diese Aufgabe zu lösen. Könnt ihr mir vielleicht weiterhelfen? Vielen Dank !
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo, eine klassische Extremwertaufgabe:
[Dateianhang nicht öffentlich]
Du hast die usprüngliche Glasplatte, [mm] \overline{AB}=110cm [/mm] und [mm] \overline{BC}=100cm, [/mm] das Dreieck GBF bricht ab, der Punkt E bewegt sich entlang der Strecke [mm] \overline{GF}, [/mm] die neue Glasplatte hat also nur noch die Breite 110cm-n und die Länge 100cm-m, weiterhin kennst du [mm] \overline{FB}=11cm [/mm] und [mm] \overline{GB}=10cm, [/mm] jetzt hilft noch der Strahlensatz
[mm] \bruch{11cm}{10cm}=\bruch{11cm-m}{n}
[/mm]
Steffi
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:25 Di 08.07.2014 | Autor: | Franks92 |
Hallo Steffi, danke für deine Antwort.
Ich steh aber weiterhin auf dem Schlauch und verstehe nicht ganz, wie mir der Strahlensatz nun weiterhilft, da ich immer noch die Variablen n und m gegeben habe und somit keine genaue Antwort bekomme.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:02 Di 08.07.2014 | Autor: | chrisno |
Betrachte die waagerechte Strecke vom Rand bis E. Nenne sie x. Wie lang ist dann die senkrechte Strecke bis E?
|
|
|
|