matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMetrischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Metrischer Raum
Metrischer Raum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrischer Raum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:02 So 28.02.2010
Autor: Babybel73

Hallo zusammen

Ich habe Probleme mit folgender Aufgabe:
Sei(X,d) ein metrischer Raum. Für je zwei nichtleere Teilmengen A,B [mm] \subset [/mm] X definieren wir
[mm] \delta(A,B)=sup {d(x,y)|x\inA,y\inB}. [/mm]
Zeige, dass
[mm] \delta(A,C)\le\delta(A,B)+\delta(B,C) \forall [/mm] A,B,C [mm] \subset [/mm] X
Wie kann ich das zeigen???
Und dann noch die Frage: Definiet [mm] \delta [/mm] eine Metrik auf der Menge aller Teilmengen von X?

Vielen Dank für die Hilfe

Liebe Grüsse

        
Bezug
Metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 So 28.02.2010
Autor: steppenhahn

Hallo Babybel73,

ich bin zwar (noch :-) ) kein Fachmann auf dem Gebiet, aber versuche mich trotzdem mal an einer Antwort:

> Hallo zusammen
>  
> Ich habe Probleme mit folgender Aufgabe:
>  Sei(X,d) ein metrischer Raum. Für je zwei nichtleere
> Teilmengen A,B [mm]\subset[/mm] X definieren wir
>  [mm]\delta(A,B)=sup {d(x,y)|x\inA,y\inB}.[/mm]
>  Zeige, dass
>  [mm]\delta(A,C)\le\delta(A,B)+\delta(B,C) \forall[/mm] A,B,C
> [mm]\subset[/mm] X
>  Wie kann ich das zeigen???

Indem du vor allem benutzt, dass d diese Eigenschaft, die der Dreiecksungleichung, ja besitzt!
Es gilt für [mm] x\in [/mm] A, [mm] y\in [/mm] B, [mm] z\in [/mm] C (und damit [mm] x,y,z\in [/mm] X !!!):

$d(x,z) [mm] \le [/mm] d(x,y)+d(y,z)$.

(Da d Metrik auf X).
Nun beginne mit der linken Seite der zu zeigenden Ungleichung:

[mm] $\delta(A,C) [/mm] = [mm] sup\{d(x,z)|x\in A, z\in C\}$ [/mm]

Nun benutzen wir die obige Ungleichung!

$= [mm] sup\{d(x,z)|x\in A, y\in B, z\in C\}$ [/mm]

[mm] $\le sup\{d(x,y)+d(y,z)|x\in A, y\in B, z\in C\}$ [/mm]

(Warum dürfen wir das: Da $d(x,z) [mm] \le [/mm] d(x,y)+d(y,z)$, wird jedes einzelne Elemente der oberen Menge [mm] $\{d(x,z)|x\in A, y\in B, z\in C\}$ [/mm] nach oben abgeschätzt. Dadurch wird natürlich auch das Supremum größer (oder es bleibt gleich)).

Nun noch die Abschätzung:

[mm] $\le sup\{d(x,y)|x\in A, y\in B, z\in C\} [/mm] + [mm] sup\{d(y,z)|x\in A, y\in B, z\in C\} [/mm] $

(mach' dir klar, warum das gilt!) Und der Rest ist ein Katzensprung... Miau.


Zur Frage der Metrik: Überlege, ob wie oben, [mm] \delta [/mm] alle Eigenschaften von d als Metrik erbt.
Dreiecksungleichung hast du schon bewiesen, Positivität ist klar, genauso wie Symmetrie. Du solltest dich nochmal kurz mit der Definitheit auseinandersetzen.

Grüße,
Stefan

Bezug
                
Bezug
Metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:32 So 28.02.2010
Autor: felixf

Hallo,

> Zur Frage der Metrik: Überlege, ob wie oben, [mm]\delta[/mm] alle
> Eigenschaften von d als Metrik erbt.
>  Dreiecksungleichung hast du schon bewiesen, Positivität
> ist klar, genauso wie Symmetrie. Du solltest dich nochmal
> kurz mit der Definitheit auseinandersetzen.

und, noch wichtiger (bzw. noch konkreter): ist [mm] $\delta(A, [/mm] B)$ ueberhaupt fuer alle Teilmengen eine reelle Zahl?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]