Metriken < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:33 Mi 14.11.2012 | Autor: | Fincayra |
Aufgabe | Stellen Sie eine Skizze dar: Was "messen" die Metriken [mm] d_1 [/mm] , [mm] d_2 [/mm] und [mm] d_\infty [/mm] im [mm] \IR^2 [/mm] |
Huhu
Wie habe ich [mm] d_1 [/mm] , [mm] d_2 [/mm] und [mm] d_\infty [/mm] zu verstehen? So ganz allgemein komme ich mit den Begriffen/Definitionen wohl noch nicht klar.
Mal ein Versuch etwas zu erklären:
Eine Metrik/Abstand ist eine Abbildung von was auch immer (bei der Aufgabe die Menge [mm] \IR^2 \times \IR^2) [/mm] auf die positiven reellen Zahlen mit bestimmten "Regeln". Also d(x,y) = |x-y|
Schön, was ist jetzt aber [mm] d_1 [/mm] ?
[mm] d_1 [/mm] : [mm] \IR^2 \times \IR^2 \to \IR_{+,0}
[/mm]
Also irgendwie [mm] | \vektor{x_1 \\ x_2} - \vektor{y_1 \\ y_2} | [/mm] ?
Aber dann? und was ist dann [mm] d_2 [/mm] ?
Oder sollte ich das aus dem Vorlesungsskript entnehmen? Das dort [mm] d_1 [/mm] , [mm] d_2 [/mm] , [mm] d_\infty [/mm] vorgegeben sind?
Bitte um Rat.
LG
Fin
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:13 Do 15.11.2012 | Autor: | fred97 |
> Stellen Sie eine Skizze dar: Was "messen" die Metriken [mm]d_1[/mm]
> , [mm]d_2[/mm] und [mm]d_\infty[/mm] im [mm]\IR^2[/mm]
> Huhu
>
> Wie habe ich [mm]d_1[/mm] , [mm]d_2[/mm] und [mm]d_\infty[/mm] zu verstehen? So ganz
> allgemein komme ich mit den Begriffen/Definitionen wohl
> noch nicht klar.
>
> Mal ein Versuch etwas zu erklären:
> Eine Metrik/Abstand ist eine Abbildung von was auch immer
> (bei der Aufgabe die Menge [mm]\IR^2 \times \IR^2)[/mm] auf die
> positiven reellen Zahlen mit bestimmten "Regeln". Also
> d(x,y) = |x-y|
> Schön, was ist jetzt aber [mm]d_1[/mm] ?
> [mm]d_1[/mm] : [mm]\IR^2 \times \IR^2 \to \IR_{+,0}[/mm]
> Also irgendwie [mm]| \vektor{x_1 \\ x_2} - \vektor{y_1 \\ y_2} |[/mm]
> ?
> Aber dann? und was ist dann [mm]d_2[/mm] ?
>
> Oder sollte ich das aus dem Vorlesungsskript entnehmen?
Ja, dort habt Ihr sicher diese Metriken definiert.
Ich vermute, Du sollst anschaulich beschreiben, wie jede dieser Metriken Abstände misst.
FRED
> Das
> dort [mm]d_1[/mm] , [mm]d_2[/mm] , [mm]d_\infty[/mm] vorgegeben sind?
>
> Bitte um Rat.
>
> LG
> Fin
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:27 Do 15.11.2012 | Autor: | Fincayra |
Hallo!
Okay, wir hatten in der Vorlesung nur [mm] d_1 [/mm] (Manhattan-Metrik) und [mm] d_2 [/mm] (Euklidische Metrik) definiert. [mm] d_\infty [/mm] haben wir per Mail nachgereicht bekommen, das ist mir erst heute aufgefallen.
[mm] d_1 [/mm] und [mm] d_2 [/mm] ist klar, was oder "wie" sie messen. Erstere misst den Weg über den Abstand der Einzelkoordinaten, läuft also quasi um die Hausblöcke drum rum. Zweitere misst "Luftlinie". Aber wie stell ich mir [mm] d_\infty [/mm] vor? [mm] (d_\infty [/mm] =: [mm] max\{|x_1 - y_1|,|x_2 - y_2|\}) [/mm] Sie misst die größte Strecke von [mm] d_1, [/mm] mal schlecht ausgedrückt.
Ich verlinke mal Wikipedia, weil ich hier nicht malen kann ; ) Dort wird die Manhattan-Metrik schön mit Bild erklärt und es ist auch gleich ein Bild von der euklidischen Metrik bei. Also alles im [mm] \IR^2 [/mm] von einem Punkt a zu einem Punkt b. Ist [mm] d_\infty [/mm] der rote Weg auf dem Bild?
http://de.wikipedia.org/w/index.php?title=Datei:Manhattan_distance.svg&page=1&filetimestamp=20060424231449
LG
Fin
|
|
|
|
|
Hallo,
> Hallo!
>
> Okay, wir hatten in der Vorlesung nur [mm]d_1[/mm]
> (Manhattan-Metrik) und [mm]d_2[/mm] (Euklidische Metrik) definiert.
> [mm]d_\infty[/mm] haben wir per Mail nachgereicht bekommen, das ist
> mir erst heute aufgefallen.
> [mm]d_1[/mm] und [mm]d_2[/mm] ist klar, was oder "wie" sie messen. Erstere
> misst den Weg über den Abstand der Einzelkoordinaten,
> läuft also quasi um die Hausblöcke drum rum. Zweitere
> misst "Luftlinie". Aber wie stell ich mir [mm]d_\infty[/mm] vor?
> [mm](d_\infty[/mm] =: [mm]max\{|x_1 - y_1|,|x_2 - y_2|\})[/mm]
Bist du dir hier sicher? Oder soll es sein: [mm] d_\infty:=\max\{|x_1 - x_2|,|y_1-y_2|\})
[/mm]
> Sie misst die
> größte Strecke von [mm]d_1,[/mm] mal schlecht ausgedrückt.
> Ich verlinke mal Wikipedia, weil ich hier nicht malen kann
> ; ) Dort wird die Manhattan-Metrik schön mit Bild erklärt
> und es ist auch gleich ein Bild von der euklidischen Metrik
> bei. Also alles im [mm]\IR^2[/mm] von einem Punkt a zu einem Punkt
> b. Ist [mm]d_\infty[/mm] der rote Weg auf dem Bild?
>
> http://de.wikipedia.org/w/index.php?title=Datei:Manhattan_distance.svg&page=1&filetimestamp=20060424231449
Wohl kaum, denn schon die Bildunterschrift verrät, dass es sich bei dem roten Pfad um die Manhatten-Metrik handelt.
>
> LG
> Fin
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:31 Mo 19.11.2012 | Autor: | Fincayra |
Nabend,
> > Aber wie stell ich mir [mm]d_\infty[/mm] vor?
> > [mm](d_\infty[/mm] =: [mm]max\{|x_1 - y_1|,|x_2 - y_2|\})[/mm]
> Bist du dir hier sicher? Oder soll es sein:
> [mm]d_\infty:=\max\{|x_1 - x_2|,|y_1-y_2|\})[/mm]
Ganz sicher, hab grad nochmal nachgeschaut.
> > Ist [mm]d_\infty[/mm] der rote Weg auf dem Bild?
> >
> http://de.wikipedia.org/w/index.php?title=Datei:Manhattan_distance.svg&page=1&filetimestamp=20060424231449
> Wohl kaum, denn schon die Bildunterschrift verrät, dass
> es sich bei dem roten Pfad um die Manhatten-Metrik
> handelt.
Ja, schon. Aber manchmal kann etwas ja auch zwei "Namen" haben.
Na ja. Der Übungszettel ist abgegeben, an meiner Antwort kann ich also nichts mehr ändern. Ich warte also ab, was die Korrekteure mir dranschreiben und frage dann nochmal hier nach, wenn ich es in der Übung nicht ordentlich verstehe ; )
LG
Fin
|
|
|
|