matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieMetrik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Metrik
Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 07.05.2007
Autor: shaggy

Hallo alle,

ich habe in einem Topologiebuch eine Bspl.aufgabe entdeckt :

Zeigen Sie, dass die beiden Metriken

[mm] $d_1(x,y) [/mm] = |x-y|$ und [mm] $d_2(x,y) [/mm] = [mm] |\frac{1}{x} [/mm] - [mm] \frac{1}{y}|$ [/mm]

auf $M = [1, [mm] \infty [/mm] )$ dieselbe Topologie induzieren, dass aber $(M, [mm] d_2)$ [/mm] nicht vollständig ist, während $(M, [mm] d_1)$ [/mm] vollständig ist.

Kann mir bitte jemand von euch die komplette Lösung angeben, weil ich gerne wissen würde, wie man bei so einer Aufgabe vorgeht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

shaggy

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Di 08.05.2007
Autor: angela.h.b.


> Zeigen Sie, dass die beiden Metriken
>  
> [mm]d_1(x,y) = |x-y|[/mm] und [mm]d_2(x,y) = |\frac{1}{x} - \frac{1}{y}|[/mm]
>  
> auf [mm]M = [1, \infty )[/mm] dieselbe Topologie induzieren, dass
> aber [mm](M, d_2)[/mm] nicht vollständig ist, während [mm](M, d_1)[/mm]
> vollständig ist.
>  
> Kann mir bitte jemand von euch die komplette Lösung
> angeben,

Hallo,

möglicherweise kann es jemand, es entspricht jedoch nicht den Forenregeln.

> weil ich gerne wissen würde, wie man bei so einer
> Aufgabe vorgeht.

Daß beide Metriken dieselbe Topologie induzieren, kannst Du zeigen, indem Du zeigst, daß jede Folge, die bzgl [mm] d_1 [/mm] konvergiert auch bzgl. [mm] d_2 [/mm] konvergiert und umgekehrt.

Vollständigkeit: hier zeigst Du, daß mit [mm] d_1 [/mm] jede Cauchyfolge im M konvergiert,
und daß es bzgl. [mm] d_2 [/mm] eine Cauchyfolge gibt, welche nicht konvergiert.
(Tip hierzu: betrachte [mm] x_n:=n.) [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]