matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMethode der Verpflanzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Methode der Verpflanzung
Methode der Verpflanzung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Methode der Verpflanzung: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:30 Mo 11.05.2015
Autor: Ymaoh

Aufgabe
Sei G = {z [mm] \in \IC: [/mm] Re(z) < 0} die linke offene Halbebene und [mm] \overline{G} [/mm] = {z [mm] \in \IC [/mm] : Re(z) [mm] \le [/mm] 0}. Finden Sie eine stetige Funktion u: [mm] \overline{G} \to \IR, [/mm] die in G harmonisch ist, mit den Randwerten [mm] u(0,y)=(siny)^2. [/mm] Hinweis: Verwenden Sie die Methode der Verpflanzung mit der Funkton [mm] f(z)=e^z. [/mm]

Ich habe leider keine Ahnung wie ich hier vorgehen soll. Hab diese Methode der Verpflanzung nicht verstanden. Ich weiß zwar, dass es darum geht, komplizierte Gebiete auf einfachere zu transformieren, um so Probleme leichter lösen zu können, aber wie genau das praktisch funktioniert weiß ich leider überhaupt nicht :(

        
Bezug
Methode der Verpflanzung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mo 11.05.2015
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Sei G = {z [mm]\in \IC:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Re(z) < 0} die linke offene Halbebene

> und [mm]\overline{G}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {z [mm]\in \IC[/mm] : Re(z) [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0}. Finden Sie

> eine stetige Funktion u: [mm]\overline{G} \to \IR,[/mm] die in G
> harmonisch ist, mit den Randwerten [mm]u(0,y)=(siny)^2.[/mm]
> Hinweis: Verwenden Sie die Methode der Verpflanzung mit der
> Funkton [mm]f(z)=e^z.[/mm]
>  Ich habe leider keine Ahnung wie ich hier vorgehen soll.
> Hab diese Methode der Verpflanzung nicht verstanden. Ich
> weiß zwar, dass es darum geht, komplizierte Gebiete auf
> einfachere zu transformieren, um so Probleme leichter
> lösen zu können, aber wie genau das praktisch
> funktioniert weiß ich leider überhaupt nicht :(


Sei D:={z [mm] \in \IC: [/mm] |z|<1} und [mm] f(z):=e^z. [/mm]

Dann ist [mm] f_{|G} [/mm] eine konforme Abbildung von G auf D. Zeige das !

Weiter ist  $f( [mm] \partial [/mm] G)= [mm] \partial [/mm] D$. Zeige auch das !

Nun löse das Problem in D bzw. in [mm] \overline{D} [/mm] und kehre nach G mittels [mm] f_{|G}^{-1} [/mm] zurück.

FRED

Bezug
                
Bezug
Methode der Verpflanzung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:45 Mo 11.05.2015
Autor: Ymaoh

Erstmal Danke für die rasche Antwort.

Ich bin die ersten Schritte mal durchgegangen, gezeigt das [mm] e^z [/mm] konform ist.
(reell differenzierbar, cauchy dgl sind erfüllt und ableitung ist [mm] \not= [/mm] 0 für ganz G).
Der Rand von G ist gerade die Imaginäre Achse, die von f auf den Einheitskreis abgebildet wird, was ja auch der Rand von D ist, also auch das stimmt.

Aber wie meinst du das, dass ich das jetzt für [mm] \overline{G} [/mm] bzw [mm] \overline{D} [/mm] lösen soll? Bei G ändert sich ja nur, dass nun auch der Rand enthalten ist, richtig? Gilt das dann auch für D, dass also |z| [mm] \le [/mm] 1 ist? Und wie bringe ich den Randwert
u(0,y) = [mm] (siny)^2 [/mm] mit rein? Muss ich eine Funktion suchen, die die imaginäre Achse auf den Einheitskreis abbildet und wo der Realteil bei (0,y) gerade auf [mm] (siny)^2 [/mm] abgebildet wird?

Bezug
                        
Bezug
Methode der Verpflanzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 13.05.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]