matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengensysteme Definition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Mengensysteme Definition
Mengensysteme Definition < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengensysteme Definition: Mengensystem, Amann
Status: (Frage) beantwortet Status 
Datum: 17:34 Do 04.10.2012
Autor: Masseltof

Hallo.

Um meine Mathekenntnisse zu verbessern habe ich mir Analysis 1 von Amann Escher ausgeliehen.
Ein Mengensystem wird hier folgendermaßen definiert:

Es sei [mm] \mathbf{A} [/mm] eine nichtleere Menge und für jedes [mm] \alpha \in \mathbf{A} [/mm] sei [mm] A_{\alpha} [/mm] eine Menge.
Dann heißt [mm] (A_{\alpha}; \alpha \in \mathbf{A}) [/mm] Familie von Mengen (oder Mengensystem), und A ist eine Indexmenge für diese Familie.

1.Frage:
Man wählt aus einer Indexmenge bspw. [mm] \mathebf{A}:={1,2,3} [/mm] ein Element und definiert hierfür eine neue Menge [mm] A_{\alpha} [/mm] also [mm] A_{1},A_{2},A_{3}. [/mm]
Man bezeichnet [mm] \{A_{1},A_{2},A_{3}\} [/mm] als Familie.
Besitzen die Elemente der Familie automatisch ein Element? [mm] A_{1}:={1}, A_{2}=2 [/mm] usw.?


Für den Durchschnitt wird nun folgende Voraussetzung und anschließende Definition gegeben:
Es sei X eine Menge und [mm] \mathcal{A} [/mm] := [mm] \{A_{\alpha} ; a \in \mathebf{A}\} [/mm] sei eine Familie von Teilmengen von X.

Durchschnitt:


[mm] \bigcap_{\alpha}A_{\alpha} [/mm] := [mm] \{x \in X ; \allquant \alpha \in \mathebf{A}: x \in A_{\alpha}\} [/mm]

Die obige Definition verstehe ich wie folgt:
Der Durchschnitt ist definiert als Menge aller x aus X, sodass für alle [mm] \alpha [/mm] aus A gilt, dass jedes x in [mm] A_{\alpha} [/mm] enthalten ist.
Also jedes x der Menge des  Durchschnitts ist in jedem [mm] A_{\alpha} [/mm] mit [mm] \alpha \in \mathebf{A} [/mm] enthalten.

Habe ich es so richtig aufgefasst?

Grüße

        
Bezug
Mengensysteme Definition: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Do 04.10.2012
Autor: luis52

Moin,

> Hallo.
>  
> Um meine Mathekenntnisse zu verbessern habe ich mir
> Analysis 1 von Amann Escher ausgeliehen.
>  Ein Mengensystem wird hier folgendermaßen definiert:
>  
> Es sei [mm]\mathbf{A}[/mm] eine nichtleere Menge und für jedes
> [mm]\alpha \in \mathbf{A}[/mm] sei [mm]A_{\alpha}[/mm] eine Menge.
>  Dann heißt [mm](A_{\alpha}; \alpha \in \mathbf{A})[/mm] Familie
> von Mengen (oder Mengensystem), und A ist eine Indexmenge
> für diese Familie.
>  
> 1.Frage:
>  Man wählt aus einer Indexmenge bspw. [mm]\mathebf{A}:={1,2,3}[/mm]
> ein Element und definiert hierfür eine neue Menge
> [mm]A_{\alpha}[/mm] also [mm]A_{1},A_{2},A_{3}.[/mm]
>  Man bezeichnet [mm]\{A_{1},A_{2},A_{3}\}[/mm] als Familie.
> Besitzen die Elemente der Familie automatisch ein Element?
> [mm]A_{1}:={1}, A_{2}=2[/mm] usw.?

Nicht nowendigerweise, es kann auch gelten [mm] $A_1=\emptyset$. [/mm]


>  
>
> Für den Durchschnitt wird nun folgende Voraussetzung und
> anschließende Definition gegeben:
>  Es sei X eine Menge und [mm]\mathcal{A}[/mm] := [mm]\{A_{\alpha} ; a \in \mathebf{A}\}[/mm]
> sei eine Familie von Teilmengen von X.
>
> Durchschnitt:
>  
>
> [mm]\bigcap_{\alpha}A_{\alpha}[/mm] := [mm]\{x \in X ; \allquant \alpha \in \mathebf{A}: x \in A_{\alpha}\}[/mm]
>  
> Die obige Definition verstehe ich wie folgt:
>  Der Durchschnitt ist definiert als Menge aller x aus X,
> sodass für alle [mm]\alpha[/mm] aus A gilt, dass jedes x in
> [mm]A_{\alpha}[/mm] enthalten ist.

Besser: Der Durchschnitt ist definiert als Menge aller [mm] $x\in [/mm] X$,
sodass für alle [mm]\alpha[/mm] aus [mm] \mathbf{A} [/mm] gilt, dass  jedes  $x_$ Element von [mm]A_{\alpha}[/mm] ist.

> Also jedes x der Menge des  Durchschnitts ist in jedem
> [mm]A_{\alpha}[/mm] mit [mm]\alpha \in \mathebf{A}[/mm] enthalten.

[ok]  


vg Luis

Bezug
                
Bezug
Mengensysteme Definition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Do 04.10.2012
Autor: Masseltof

Danke vielmals :)

Schönen Abend noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]