matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenlehre - metrischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Mengenlehre - metrischer Raum
Mengenlehre - metrischer Raum < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre - metrischer Raum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:28 Mo 23.04.2012
Autor: ggT

Aufgabe
C ist ein metrischer Raum und es gilt A, B [mm] $\subset$ [/mm] C. Zeige, dass gilt: [mm] \\ [/mm]
[mm] $\overline{(A \cup B)} [/mm] = [mm] \overline{A} \cup \overline{B}$ \\ [/mm]
[mm] $\overline{(A \cap B)} \subset \overline{A} \cap \overline{B}$ \\[1em] [/mm]

Ich komm hier irgendwie nicht weiter. Ich kenn die De Morgan'sche Gesetze und wir mussten die früher auch irgendwann mal beweisen, allerdings sind diese doch eher das umgekehrte von dem ganzen: [mm] \\ [/mm]
[mm] $\overline{(A \cup B)} [/mm] = [mm] \overline{A} \cap \overline{B}$ \\ [/mm]
[mm] $\overline{(A \cap B)} [/mm] = [mm] \overline{A} \cup \overline{B}$ [/mm]

Ist das bei einem metrischen Raum komplett anders?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengenlehre - metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mo 23.04.2012
Autor: tobit09

Hallo ggT,


>  Ich komm hier irgendwie nicht weiter. Ich kenn die De
> Morgan'sche Gesetze und wir mussten die früher auch
> irgendwann mal beweisen, allerdings sind diese doch eher
> das umgekehrte von dem ganzen: [mm]\\[/mm]
>  [mm]\overline{(A \cup B)} = \overline{A} \cap \overline{B}[/mm] [mm]\\[/mm]
>  [mm]\overline{(A \cap B)} = \overline{A} \cup \overline{B}[/mm]
>  
> Ist das bei einem metrischen Raum komplett anders?

Die Bedeutung von den Strichen über den Mengen ist bei den De Morgan'schen Gesetzen eine ganz andere: Dort ist das Komplement der Menge innerhalb einer Obermenge gemeint. Das hat nichts mit dem Abschlüssen in einem metrischen Raum zu tun, um die es in dieser Aufgabe geht.


Wisst ihr, dass der Abschluss einer Menge A in einem metrischen Raum nichts anderes als die Menge der Grenzwerte konvergenter Folgen mit Werten in A ist?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]