matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Mengenlehre
Mengenlehre < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 17.07.2018
Autor: meister_quitte

Aufgabe
Seien X, Y beliebige nichtleere Mengen. Man beweise oder widerlege:

a) Für alle  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$ gilt

[mm] $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cap B_1 \right) \times \left( A_2 \cap B_2 \right)$ [/mm]

b) Für alle  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$ gilt

[mm] $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cup B_1 \right) \times \left( A_2 \cup B_2 \right)$ [/mm]

Hallo Freunde der Mathematik,

ich wollte wissen, ob mein Gerechnetes so stimmt.

Vielen Dank schon mal im Voraus.

Schöne Grüße

Christoph

Vor.: X, Y beliebige nichtleere Mengen,  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$

Beh.: a) [mm] $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cap A_2 \right) \times \left( B_1 \cap B_2 \right)$ [/mm]

b) [mm] $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cup A_2 \right) \times \left( B_1 \cup B_2 \right)$ [/mm]

Bew.: a) [mm] $\left( x,y \right) \in $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) \iff \left( x,y \right) \in \left( A_1 \times B_1 \right) \wedge \left( x,y \right) \in \left( A_2 \times B_2 \right) \iff [/mm] x [mm] \in A_1 \wedge [/mm] x [mm] \in A_2\wedge [/mm] y [mm] \in B_1 \wedge [/mm] y [mm] \in B_2 \iff [/mm] x [mm] \in \left( A_1 \cap A_2 \right) \wedge [/mm] y [mm] \in \left( B_1 \cap B_2 \right) \iff \left( x,y \right) \in \left( A_1 \cap A_2 \right) \times \left( B_1 \cap B_2 \right)$ [/mm]

b) [mm] $\left( x,y \right) \in $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) \iff \left( x,y \right) \in \left( A_1 \times B_1 \right) \vee \left( x,y \right) \in \left( A_2 \times B_2 \right) \iff \left( x \in A_1 \wedge y \in B_1 \right) \vee \left( x \in A_2 \wedge y \in B_2 \right) \not\gdw \left( x \in A_1 \vee x \in A_2 \right) \wedge \left( y \in B_1 \vee y \in B_2 \right) \iff \left( x,y \right) \in \left( A_1 \cup A_2 \right) \times \left(B_1 \cup B_2 \right)$ [/mm] (Wds.)

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Di 17.07.2018
Autor: Fulla

Hallo Christoph,

du hast dich zwar bei der Aufgabenstellung oben vertippt, aber an deiner Lösung habe ich nichts auszusetzen.
Bei b) könntest du evtl. das "[mm]\not\Leftrightarrow[/mm]" etwas erläutern, bzw. an der Stelle "[mm]\Longrightarrow[/mm]" schreiben und begründen, warum die Rückrichtung nicht gilt.
(Siehe dazu auch []hier.)

Lieben Gruß,
Fulla

Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 17.07.2018
Autor: meister_quitte

Hallo Fulla,

laut deinem Link gilt. dass bei b) die linke Seite die Rechte enthält, aber nicht umgekehrt. Deswegen lässt zwischen und und oder nicht tauschen, weil sonst die Rechenregel verletzt würde. Ich hoffe ich habe das richtig erklärt.

Liebe Grüße

Christoph

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Di 17.07.2018
Autor: Fulla


> Hallo Fulla,

>

> laut deinem Link gilt. dass bei b) die linke Seite die
> Rechte enthält, aber nicht umgekehrt. Deswegen lässt
> zwischen und und oder nicht tauschen, weil sonst die

Da fehlt doch was...?

> Rechenregel verletzt würde. Ich hoffe ich habe das richtig
> erklärt.

Auf Wikipedia ist die Reihenfolge genau anders herum, als in deiner Aufgabe...

Bezug
                                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mo 30.07.2018
Autor: meister_quitte

Alles klar. Danke für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]