matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Mengen
Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mo 15.12.2008
Autor: hatiran1987

Aufgabe
Seien A, B, C Mengen. Man zeige

a) A \ B = A [mm] \cap \overline{B} [/mm]

b) ( A \ B ) \ C  = A (B [mm] \cup [/mm] C)

c) (A [mm] \cup [/mm] B) [mm] \cap [/mm] C = (A [mm] \cap [/mm] C) [mm] \cup [/mm] ( B [mm] \cap [/mm] C)

Hinweis: Man zeige jeweils die beiden Inklusionen [mm] \supseteq [/mm] und  [mm] \subseteq [/mm] (Führen Sie den Beweis ohne Wahrheitswerttafeln und Venndiagramme)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir einer Helfen, ich weiss nicht was die von mir möchte.



        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 15.12.2008
Autor: kuemmelsche

Hallo hatiran,

bei dieser Aufgabe ist die typische Beweisführung für Mengen gefragt.

Du sollst zeigen das die eine Menge Teilmenge der anderen ist, und umgekehrt. Damit hast du die Gleichheit gezeigt.

Ich machs dir mal an der ersten Aufgabe vor, den Rest solltest du dann leichter schaffen:

Nehmen wir uns ein x [mm] \in [/mm] A \ B [mm] \gdw [/mm] x [mm] \in [/mm] a [mm] \wedge [/mm] x [mm] \not\in [/mm] B [mm] \gdw [/mm] x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in \overline{B} [/mm] (Komplemantärmenge) [mm] \gdw [/mm] x [mm] \in A\cap\overline{B} [/mm]

Damit hätten wir gezeigt, dass wenn ein x in [mm] A\cap\overline{B} [/mm] enthalten ist, genau so in A \ B enthalten ist und umgekehrt.

Damit muss gelten: A \ B = [mm] A\cap\overline{B} [/mm]

Manchmal ist es nicht so leicht, diese Schlussfolgerungen mit Äquivalenzpfeilen zu machen, dann muss man erst zeigen, dass x [mm] \in [/mm] X [mm] \Rightarrow [/mm] x [mm] \in [/mm] Y und x [mm] \in [/mm] Y [mm] \Rightarrow [/mm] x [mm] \in [/mm] X. Und daraus kannst du dann auf X = Y schließen.

Ich hoffe jetzt wird die Aufgabe ein wenig leichter.

lg Kai

Bezug
                
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Mo 15.12.2008
Autor: hatiran1987

Erst einmal vielen Dank.

Also dann ist bei b die Lösung:

x   [mm] \in [/mm]   ( A \ B) \ C  [mm] \gdw [/mm]  ( x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in \overline{B} [/mm] )
[mm] \vee [/mm]  x   [mm] \in \overline{C} [/mm]

[mm] \gdw [/mm]  x  [mm] \in [/mm]   A   [mm] \wedge [/mm]  x  [mm] \in \overline{B} \vee [/mm]  x  [mm] \in \overline{C} [/mm]

[mm] \gdw [/mm]  x   [mm] \in [/mm]  A    [mm] \wedge [/mm]   x   [mm] \in \overline{B} \cup [/mm]  x  [mm] \in \overline{C} [/mm]

[mm] \gdw [/mm]  x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in \overline{B} \cup \overline{C} [/mm]

[mm] \gdw [/mm]  A\ (B [mm] \cup [/mm] C)




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]