matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Mengen
Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 So 30.12.2007
Autor: Phecda

hi
es heißt dass der durchschnitt eines endlichen systems offener mengen eine offene menge ist.
der durchschnitt eines unendlichen systems von offenen mengen braucht nicht offen zu sein. etwa das offene intervall ]-a,a[
meine frage ist, warum der durchschnitt nur aus der zahl 0 besteht, die ja keine offen menge bildet.
(eingebetteter metrischer Raum ist [mm] \IR) [/mm]

danke

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 So 30.12.2007
Autor: koepper

Hallo,

>  es heißt dass der durchschnitt eines endlichen systems
> offener mengen eine offene menge ist.

das "heißt" es nicht nur. Das ist so.

>  der durchschnitt eines unendlichen systems von offenen
> mengen braucht nicht offen zu sein. etwa das offene
> intervall ]-a,a[

bitte demnächst etwas ausführlicher!
Ich nehme an du meinst

$A := [mm] \bigcap_{a=1}^\infty \quad ]-\frac{1}{a}; \frac{1}{a}[$ [/mm]

> meine frage ist, warum der durchschnitt nur aus der zahl 0
> besteht, die ja keine offen menge bildet.

Überlege einfach, daß die 0 in jeder der beteiligten Mengen liegt, also auch im Durchschnitt.
Zu jeder anderen reellen Zahl r gibt es dagegen eine natürliche Zahl a, so daß $r [mm] \notin \quad ]-\frac{1}{a}; \frac{1}{a}[$ [/mm]

Gruß
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]