matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Mengen
Mengen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Relation
Status: (Frage) beantwortet Status 
Datum: 19:17 Sa 02.11.2019
Autor: Kenano

Hallo Leute, ich brauch Hilfe mit dieser Aufgabe.
Danke im Voraus! :)

a) Seien A und B Mengen, und f : A → B eine Abbildung. Für  x, y ∈ A definieren wir x ∼ y :⇔ f(x) = f(y). Begründen Sie, dass  ∼ eine Äquivalenzrelation auf  A ist.

b) Seien A = B = R und f(x) = x². Wie sehen dann die Aquivalenzklassen bezüglich der in (a) definierten Aquivalenzrelation aus?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Sa 02.11.2019
Autor: chrisno

Hallo,

es fehlt da ein eigener Beitrag von Dir.
Als erstes brauchst Du die Defnition einer Äquivalenzrelation.
Dann wird Stück für Stück nachgeschaut, ob die Definition von der gegebene Relation erfüllt wird.
Also: schreib die Defnition mal hin, damit da etwas zum Anfangen steht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]