matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeMenge komplex. Z. Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Menge komplex. Z. Vektorraum
Menge komplex. Z. Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge komplex. Z. Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Di 15.01.2008
Autor: hase-hh

Aufgabe
Für eine komplexe Zahl z [mm] \in [/mm] C sei Q(z) die MEnge aller komplexen Zahlen, die sich in der Form

a0 + a1z + [mm] a2z^2+.... anz^n [/mm]  mit n [mm] \in [/mm] N und a0,...an [mm] \in [/mm] Q

schreiben lassen.

a) Zeigen Sie, dass Q(z) ein Vektorraum über Q ist, wobei Q als Unterkörper von C auffassen.

b) Bestimmen Sie die Dimension von [mm] Q(\wurzel{2}). [/mm]  
Sie dürfen ohne Beweis verwenden, dass [mm] \wurzel{2} [/mm] nicht rational ist.

c) Ist [mm] Q(\wurzel{2}) [/mm] ein Körper? Ist [mm] Q(\wurzel[3]{2}) [/mm] ein Körper?
    

Moin,

habe keine Ahnung wie ich hier vorgehen soll / kann.

a) Im Prinzip müsste ich dazu die 8 Vektorraumeigenschaften prüfen. Oder kann ich wg. der Eigenschaft, dass Q ein Unterkörper von C ist, die Beweisführung abkürzen... ?

b)  ???

c) Müsste hier wiederum die Körperaxiome prüfen? Wie würdet ihr vorgehen? Ist es ggf. einfacher Gegenbeispiele zu finden?

Vielen Dank für eure Hilfe!!

Gruß
Wolfgang

        
Bezug
Menge komplex. Z. Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Mi 16.01.2008
Autor: angela.h.b.


> Für eine komplexe Zahl z [mm]\in[/mm] C sei Q(z) die MEnge aller
> komplexen Zahlen, die sich in der Form
>  
> a0 + a1z + [mm]a2z^2+.... anz^n[/mm]  mit n [mm]\in[/mm] N und a0,...an [mm]\in[/mm] Q
>
> schreiben lassen.
>  
> a) Zeigen Sie, dass Q(z) ein Vektorraum über Q ist, wobei Q
> als Unterkörper von C auffassen.
>
> b) Bestimmen Sie die Dimension von [mm]Q(\wurzel{2}).[/mm]  
> Sie dürfen ohne Beweis verwenden, dass [mm]\wurzel{2}[/mm] nicht
> rational ist.
>
> c) Ist [mm]Q(\wurzel{2})[/mm] ein Körper? Ist [mm]Q(\wurzel[3]{2})[/mm] ein
> Körper?
>    
> Moin,
>
> habe keine Ahnung wie ich hier vorgehen soll / kann.
>
> a) Im Prinzip müsste ich dazu die 8 Vektorraumeigenschaften
> prüfen. Oder kann ich wg. der Eigenschaft, dass Q ein
> Unterkörper von C ist, die Beweisführung abkürzen... ?

Hallo,

wenn Ihr gezeigt habt, daß [mm] \IC [/mm] über [mm] \IQ [/mm] ein VR ist, würde ich hier die Unterraumeigenschaft zeigen, denn [mm] \IQ(z) [/mm] ist ja eine Teilmenge von [mm] \IC. [/mm]

>
> b)  ???

Das läuft darauf hinaus, daß Du eine Basis suchst. Daß [mm] ((\wurzel{2})^i [/mm] | i=0,1,2,3,...) ein Erzeugendensystem ist, dürfte ja klar sein. Du benötigst, um den Raum zu erzeugen und a


> c) Müsste hier wiederum die Körperaxiome prüfen? Wie würdet
> ihr vorgehen? Ist es ggf. einfacher Gegenbeispiele zu
> finden?

Beide Mengen sind ja Teilmengen von [mm] \IC, [/mm] daher würde ich schauen, ob die Unterkörpereigenschaften erfüllt sind.
Wenn nicht: Gegenbeispiel.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]