matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMehrdimensional quasi-Gauss
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Mehrdimensional quasi-Gauss
Mehrdimensional quasi-Gauss < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensional quasi-Gauss: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:35 Fr 12.06.2015
Autor: waruna

Hallo,
Ich weiss, dass das mehrdimensionale Integral der Form

[mm] \int\limits_{-\infty}^{\infty} d^2 [/mm] z [mm] e^{-z^+ K z +z^+ \cdot v + v^+ \cdot z } [/mm] = [mm] \frac{1}{detK}e^{v^+ K^{-1} v} [/mm]

gegebene Lösung hat (K- symetrische, positive Matrix, z ist komplexer Vektor, [mm] d^2 [/mm] z=dRe(z)dIm(z), +-komplex konjugiert + transponiert).
Kann man auch die Lösung von solches Integral:
[mm] \int\limits_{-\infty}^{\infty} d^2 [/mm] z [mm] e^{-z^+ K z +z^+ \cdot v + v^+ \cdot z + z^T V z +z^+ V^+ z\*}= \int d^2 [/mm] z [mm] e^{-z^+ K z +z^+ \cdot v + v^+ \cdot z + 2Re( z^T V z) } [/mm]
einfach angeben?
(mit T- transponiert, *-komplex konjugiert)

        
Bezug
Mehrdimensional quasi-Gauss: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 20.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]