matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikMechanik Massengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Mechanik Massengleichung
Mechanik Massengleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mechanik Massengleichung: Lösung gesucht
Status: (Frage) beantwortet Status 
Datum: 14:27 Fr 02.05.2008
Autor: xAmp

Aufgabe
[Dateianhang nicht öffentlich]


Mein gedachter Lösungsansatz war folgender:
Die Masse m1 wird durch die Reibungskraft (Fr = [mm] \mu [/mm] * m1 * g *  cos( [mm] \alpha [/mm] ) ) gehalten. Die Masse m2 muss also so groß gewählt werden, dass diese in der Lage ist m1+m2 in Bewegung zu setzen.
So gilt laut meiner Ansicht nach die Gleichung für Stillstand (m1+m2)*g = [mm] \mu [/mm] * m1 * g *  cos( [mm] \alpha [/mm] )
Ist das soweit richtig? Doch wie komm ich auf den Winkel [mm] \alpha [/mm] um die benötigten Werte berechnen zu können? Oder hab ich den falschen Ansatz?

Gruß xAmp

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Mechanik Massengleichung: Korrektur
Status: (Antwort) fertig Status 
Datum: 14:55 Fr 02.05.2008
Autor: Loddar

Hallo xAmp!


Der Winkel [mm] $\alpha$ [/mm] beschreibt jeweils die Neigung der Ebene. Da die Reibungsebene hier horizontal verläuft, gilt: [mm] $\alpha [/mm] \ = \ 0°$ .


> Die Masse m1 wird durch die Reibungskraft (Fr = [mm]\mu[/mm] * m1 *
> g *  cos( [mm]\alpha[/mm] ) ) gehalten.

[ok]


> Die Masse m2 muss also so groß gewählt werden, dass diese in der
> Lage ist m1+m2 in Bewegung zu setzen.

[notok] In dem Seil / Faden kann doch nur maximal die Gewichtskraft der Masse [mm] $m_2$ [/mm] wirken. Diese muss also die Haftreibung überschreiten.


> So gilt laut meiner Ansicht nach die Gleichung für
> Stillstand (m1+m2)*g = [mm]\mu[/mm] * m1 * g *  cos( [mm]\alpha[/mm] )

[notok] Es gilt m.E. [mm] $F_{G,2} [/mm] \ [mm] \ge [/mm] \ [mm] F_{R} [/mm] \ = \ [mm] \mu*F_{G,1}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Mechanik Massengleichung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Fr 02.05.2008
Autor: xAmp

Danke Loddar,
jetzt komme ich auch auf das korrekte Ergebnis. Hast mir sehr geholfen!

Gruß xAmp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]