matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisMc Laurin Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Mc Laurin Reihe
Mc Laurin Reihe < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mc Laurin Reihe: Erklärung
Status: (Frage) beantwortet Status 
Datum: 23:17 Mo 22.05.2006
Autor: thomas521

Hallo zusammen,

als wir im Mathematik-Unterricht die Mac Laurin Reihen gesehen haben, war ich leider krank. Ich habe zwar die Theorie, aber so gut wie keine Erklärungen. Ich würde mich freuen, wenn mir jemand eine kleine Einleitung geben könnte, damit ich Aufgaben wie die Funktion [mm] e^x [/mm] in der Mac Laurinschen Reihendarstellung darzustellen und anschließend beispielsweise e^3x in 6 'etappen' berechnen zu können.
Ich habe bereits auf Wikipedia nachgeschaut, aber leider ist mir die Erklärung dort zu kompliziert.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mit freundlichen Grüßen
Thomas

        
Bezug
Mc Laurin Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 23.05.2006
Autor: Micha

Hallo!

> Hallo zusammen,
>  
> als wir im Mathematik-Unterricht die Mac Laurin Reihen
> gesehen haben, war ich leider krank. Ich habe zwar die
> Theorie, aber so gut wie keine Erklärungen. Ich würde mich
> freuen, wenn mir jemand eine kleine Einleitung geben
> könnte, damit ich Aufgaben wie die Funktion [mm]e^x[/mm] in der Mac
> Laurinschen Reihendarstellung darzustellen und anschließend
> beispielsweise e^3x in 6 'etappen' berechnen zu können.
>  Ich habe bereits auf Wikipedia nachgeschaut, aber leider
> ist mir die Erklärung dort zu kompliziert.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mit freundlichen Grüßen
>  Thomas

Die MacLaurin-Reihe ([]http://de.wikipedia.org/wiki/MacLaurinsche_Reihe) ist eine Potenzreihe, die für eine Funktion f eine gute Annährung gibt. Potenzreihen haben gute Eigenschaften, weil man an ihnen einfacher bestimmte Dinge wie Ableitungen untersuchen kann und annähern kann.

Potenzreihen sehen allgemein so aus: [mm] \summe_{i=1}^{\infty} a_i (x-b)^i[/mm] Bei MacLaurinreihen ist b immer 0, also

$ f(x) [mm] \approx[/mm]  [mm] \summe_{i=1}^{\infty} a_i x^i[/mm]

Nun muss man nur noch die Koeffizienten [mm] $a_i$ [/mm] bestimmen. Dafür gibt es eine feste Formel: [mm] $a_i [/mm] = [mm] \frac{f^(i)(0)}{i!}$ [/mm]
(Also die i-te Ableitung an der Stelle 0 ausgewertet geteilt durch i!)

Die ersten Koffizienten sind also
[mm] $a_0 [/mm] = f(0)$, [mm] $a_1 [/mm] = f'(0)$, [mm] $a_2 [/mm] = [mm] \frac{f''(0)}{2}$, $a_3 [/mm] = [mm] \frac{f'''(0)}{6}$, [/mm] ...

Gruß Micha ;-)

Bezug
                
Bezug
Mc Laurin Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Di 23.05.2006
Autor: thomas521

Vielen Dank für die schnelle Antwort, das hat mir schon mal geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]