Maximumsnorm als Grenzfall < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Guten Vormittag, ich möchte gerne wissen, warum $\lim\limits_{ p \rightarrow \infty} \vert \vert x \vert \vert_{p} = \lim\limits_{ p \rightarrow \infty}\left ( \sum\limits_{j = 1}^{d} \vert x_{j} \vert ^{p} \right)^{\frac{1}{p}} = max_{j = 1, \ldos, d} \vert x_{j} \vert = \vert \vert x \vert \vert_{\infty}$ gilt.
Ich habe mir dazu den Beweis auf Wikipedia angeschaut, also diesen:
________________________________________________________________________________________________________________________________
$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}\left({\frac {|x_{i}|}{\|x\|_{\infty }}}\right)^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }S^{1/p}=\|x\|_{\infty }}$,
da für die Summe $1 \leq S \leq n$ gilt und somit der Grenzwert von $ \sqrt[p]{S}$ für $ p\rightarrow \infty $ gleich Eins ist. Die untere Schranke von $S$ wird dabei für einen Vektor angenommen, dessen Komponenten bis auf eine alle gleich Null sind, und die obere Schranke$n$ für einen Vektor, dessen Komponenten alle den gleichen Betrag besitzen. Durch Weglassen des Limes ist so auch ersichtlich, dass die Maximumsnorm niemals größer als die $p$ -Normen ist.
________________________________________________________________________________________________________________________________
Den Beweis dazu habe ich eigentlich ganz gut verstanden, aber der ist noch nicht so richtig intuitiv, weil da mit $\frac{\vert \vert x \vert \vert_{\infty}}{\vert \vert x \vert \vert_{\infty}}$ gespielt wird.
Ich meine, die künstliche $1$ fügt man nur hinzu, weil man am Ende eh weiß, dass der Grenzwert eben die Maximumsnorm ist. Aber das wusste man ja am Anfang nicht. Daher hätten sie nicht auf so einem Ansatz kommen können.
Meine Frage ist: Wie komme ich auf den selben Grenzwert, ohne mitten in der Rechnung das Maximum aller Beträge zu erhalten oder eine derartige künstliche $1$ hinzuzufügen?
Ich hoffe, ihr wisst, was ich meine.
Wie schaffe ich es also auf natürlichem Weg, die Gleichung $\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \|x\|_{\infty }}$ zu zeigen?
Ich würde z.B. so anfangen:
$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \lim _{p\rightarrow \infty } \sqrt[p]{\vert x_{1} \vert^{p} + \vert x_{2} \vert^{p} + \vert x_{3} \vert^{p} + \ldots + \vert x_{d} \vert^{p}} = \lim _{p\rightarrow \infty } \sqrt[p]{\vert x_{1} \vert^{p} \left 1 +\frac{\vert x_{2} \vert^{p}}{\vert x_{1} \vert^{p}} + \frac{\vert x_{3} \vert^{p}}{\vert x_{1} \vert^{p}} + \ldots + \frac{\vert x_{d} \vert^{p}}{\vert x_{1} \vert^{p}} \right )} = \lim _{p\rightarrow \infty } \sqrt[p]{\vert x_{1} \vert^{p} \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$
$ = \lim _{p\rightarrow \infty } \vert x_{1} \vert \cdot \sqrt[p]{ \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$
Und so weiter. Aber das wird eine ewige Rechnung. Gibt es andere Methoden?
lg, boogie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:11 Sa 30.11.2019 | Autor: | fred97 |
Was mit S gemeint ist, hast du nicht gesagt.
Ich beweise obige Grenzwertbeziehung so, dabei genügt es, den Fall d=2 zu betrachten ( die Idee für den allgemeinen Fall dürfte dann klar sein.)
Seien a und b nichtnegative Zahlen und a [mm] \le [/mm] b. Es folgt
$b [mm] \le (b^{p}+a^{p})^{1/p} \le (2b^{p})^{1/p}=2^{1/p}b. [/mm] $
mit $p [mm] \to \infty [/mm] $ folgt das Resultat.
|
|
|
|