Maximum-Likelihood < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Die Zufallsvariable X habe für [mm] \lambda>0 [/mm] die Dichtefunktion
[mm] f(x)=\lambda*2^{\lambda}*x^{-\lambda-1} [/mm] für [mm] x\ge2
[/mm]
f(x)=0 sonst
Zeigen Sie, dass f tatsächlich für jedes [mm] \lambda>0 [/mm] eine Dichtefunktion ist. Berechnen Sie auf der Basis einer n-Stichprobe den Maximum-Likelihood-Schätzer für [mm] \lambda. [/mm] |
Frage 1 hab ich hinbekommen. Zeigen, dass das Integral von [mm] -\infty [/mm] bis [mm] \infty [/mm] gleich 1 ist und dass die Funktion überall [mm] \ge0 [/mm] ist.
Aber Frage 2 komme ich mit einer Likelihood-Funktion g(x)=ln(x) auf [mm] \lambda=\bruch{-1}{ln(2)-\bruch{1}{n}*\summe_{i=1}^{n}ln(x_{i})}
[/mm]
Kann das sein? Kommt mir komisch vor, da [mm] \lambda [/mm] ja auch immer größer null sein soll.
Hat jemand vielleicht eine Empfehlung für ein Buch oder am Besten eine Internetseite, wo die Likelihood-Funktion bzw. mathematische Statistik "idiotensicher" erklärt ist? Verstehe nämlich allgemein viel zu wenig.
Vielen lieben Dank!!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:40 Mo 13.04.2009 | Autor: | luis52 |
> Aber Frage 2 komme ich mit einer Likelihood-Funktion
> g(x)=ln(x) auf
> [mm]\lambda=\bruch{-1}{ln(2)-\bruch{1}{n}*\summe_{i=1}^{n}ln(x_{i})}[/mm]
> Kann das sein?
> Kommt mir komisch vor, da [mm]\lambda[/mm] ja auch
> immer größer null sein soll.
Wo ist das Problem? Der Schaetzer leistet das.
vg Luis
|
|
|
|