matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMaximum-Likelihood-Schätzer
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Maximum-Likelihood-Schätzer
Maximum-Likelihood-Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Mo 18.02.2008
Autor: chris2408

Aufgabe
siehe Scann

[Dateianhang nicht öffentlich]
Hallo,

ich habe zu der Lösung der Aufgabe bei dem 2.Schritt (Aufstellen der log-Likelihood-Funktion) zwei Fragen.

1.)Mit ist nicht klar, wie ich hier von der 3. auf die 4. Zeile komme, was da gemacht wurde.

2.) Allgemein, wie lange muss ich bei dem zweiten Schritt die ganze Gleichung umformen? Auf was muss ich kommen? Mir ist nicht ganz klar, wann der zweite Schritt beendet ist.
Der dritte Schritt ist ja dann, das ganze gleich Null zu setzen und nach Teta aufzulösen.

Danke
Christopher




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Maximum-Likelihood-Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Mo 18.02.2008
Autor: luis52

Moin Chris,

>  
> ich habe zu der Lösung der Aufgabe bei dem 2.Schritt
> (Aufstellen der log-Likelihood-Funktion) zwei Fragen.
>
> 1.)Mit ist nicht klar, wie ich hier von der 3. auf die 4.
> Zeile komme, was da gemacht wurde.

[mm] $\ln(1/\theta)=-\ln \theta$ [/mm] (alte Bauernregel!)
In [mm] $\sum_{i=1}^n-\ln \theta$ [/mm] wird $n$-mal eine Konstante addiert.
Ferner: Schreibe [mm] $x_i^{(-1+\theta)/\theta}$ [/mm] in der Form
[mm] $\exp[((-1+\theta)/\theta)\ln x_i]$. [/mm] Wenn du jetzt logarithmierst erhaeltst
du (fast) das Gewuenschte. *Ich* erhalte [mm] $-n\ln\theta+(1-1/\theta)\sum_{i=1}^n\ln x_i$. [/mm]

>  
> 2.) Allgemein, wie lange muss ich bei dem zweiten Schritt
> die ganze Gleichung umformen?

[verwirrt] Gruebel, gruebel... Was meinst du damit?

>Auf was muss ich kommen?

Na, auf etwas, was dir die Bestimmung des Maximums hinreichend erleichert.

> Mir
> ist nicht ganz klar, wann der zweite Schritt beendet ist.
>  Der dritte Schritt ist ja dann, das ganze gleich Null zu
> setzen und nach Teta aufzulösen.

Genau, es waere also schoen, wenn du vorher einen saueinfachen
Ausdruck findest, der dir das Loesen der Gleichung ungemein erleichtert.


vg Luis              

Bezug
                
Bezug
Maximum-Likelihood-Schätzer: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Mo 18.02.2008
Autor: chris2408

danke, bei der Aufgabe ist es jetzt klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]