matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenMaximales Volumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Maximales Volumen
Maximales Volumen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Volumen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 27.04.2010
Autor: sunbell

Aufgabe
Gegeben:

Ebenenschar [mm] E_{a}= [/mm] ax+(a-2)*y +4z= 22

Der Koordinatenursprung sei die Spitze eines Kreiskegels, dessen grundfläche in der Ebeneschar [mm] E_{a} [/mm] liegt.
Ermitteln Sie den paramater a für den fall, dass das Volumen des Kegels bei gleichem radius maximal ist.

Hallo liebe Leute,

ich bereite mich gerade auf mein Mathe.Abi vor und bin auf diese Teilaufgabe in meinem Mathevorbereitungsbuch gestoßen, mit der ich nicht wirklich was anfangen kann.
Ich meine, da ist auch eine Lösung abgedruckt, die aber sehr schwer verständlich ist und die mir auch nicht weiterhilft.
Nun hoffe ich ja, dass es mir hier jemand besser erkläutern kann.

nunja, also da der radius gleich bleibt, muss die höhe des kegels maximal werden, damit das volumen des kegels auch wird.
ich dachte ja, dass man zuerst den abstand von dem koordinatenursprung zu [mm] E_{a}. [/mm]

[mm] n_{0}=\bruch{\vektor{1 \\ a-2 \\ 4}}{\wurzel{2a^2-4a+20}} [/mm]

aber ich komm jetzte nicht weiter..
ein kleiner tipp wäre ganz gut!

        
Bezug
Maximales Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Di 27.04.2010
Autor: abakus


> Gegeben:
>  
> Ebenenschar [mm]E_{a}=[/mm] ax+(a-2)*y +4z= 22
>  
> Der Koordinatenursprung sei die Spitze eines Kreiskegels,
> dessen grundfläche in der Ebeneschar [mm]E_{a}[/mm] liegt.
>  Ermitteln Sie den paramater a für den fall, dass das
> Volumen des Kegels bei gleichem radius maximal ist.
>  Hallo liebe Leute,
>  
> ich bereite mich gerade auf mein Mathe.Abi vor und bin auf
> diese Teilaufgabe in meinem Mathevorbereitungsbuch
> gestoßen, mit der ich nicht wirklich was anfangen kann.
>  Ich meine, da ist auch eine Lösung abgedruckt, die aber
> sehr schwer verständlich ist und die mir auch nicht
> weiterhilft.
>  Nun hoffe ich ja, dass es mir hier jemand besser
> erkläutern kann.
>  
> nunja, also da der radius gleich bleibt, muss die höhe des
> kegels maximal werden, damit das volumen des kegels auch
> wird.
>  ich dachte ja, dass man zuerst den abstand von dem
> koordinatenursprung zu [mm]E_{a}.[/mm]
>  
> [mm]n_{0}=\bruch{\vektor{1 \\ a-2 \\ 4}}{\wurzel{2a^2-4a+20}}[/mm]

Statt der 1 müsste dort ein a stehen.

>  
> aber ich komm jetzte nicht weiter..
>  ein kleiner tipp wäre ganz gut!

Hallo,
du hast den Normalenvektor wohl gerade normiert. Mit dem so "glattgeschliffenen"  Betrag "1" taugt dieser Vektor nicht mehr richtig dazu, um etwas über den Betrag der Höhe auszusagen.

Gruß Abakus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]