matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeMaximaler Flächeninhalt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Maximaler Flächeninhalt
Maximaler Flächeninhalt < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximaler Flächeninhalt: Aufgabe 8
Status: (Frage) beantwortet Status 
Datum: 16:04 Sa 06.02.2010
Autor: HoRuS89

Aufgabe
Im Baumarkt werden rechteckige Spanplatten mit den Seitenlänger 2,00 m und 3,00 m gelagert. Von einer Platte ist ein dreieckiges Stück mit den Katheden längen 0,15 m und 0,20 m abgebrochen. Um wieder eine rechteckige Platte zu erhalten, sollen die Randstreifen abgesägt werden. Wie groß müssen diese sein, damit die entstehende Platte einen möglichst großen Flächeninhalt behält?

Ich suche verzweifelt nach der korrekten Lösung dieses Problems... Hat jemand einen guten Lösungsansatz oder eine Lösung mit Detailliertem Rechenweg?

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Maximaler Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Sa 06.02.2010
Autor: M.Rex

Hallo

[Dateianhang nicht öffentlich]

Wenn du den Ursprung in den grünen Punkt legst, kannst du mit Hilfe der Punkte P und Q die Violette Gerade bestimmen, also y=mx+n

Dann gilt:

A=(2-y)(3-x)

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Maximaler Flächeninhalt: Lösung Aufgabe 8
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 Sa 06.02.2010
Autor: HoRuS89

Vielen Dank für die schnelle und professionelle Hilfe,
Meine Lösung:
A = ab

a = 2-y
b = 3-x

A = (2-y)(3-x)

ausgehend von dem Dreieck lässt sich die Funktion
y(x) = -0,75x + 0,15
bilden. Eingesetzt in die Funktion für den Flächeninhalt ergibt sich die Zielfunktion
A(x) = (2 - [-0,75x + 0,15]) (3 - x)
A(x) = (0,75x + 1,85) (3 - x)

A(x) = [mm] -0,75x^{2} [/mm] + 0,4x + 5,55

Es ergibt sich das für x = 0,2 der Flächeninhalt mit 5,6 [mm] m^{2} [/mm] am größten ist, die Seitenlängen der neuen Platte betragen 2,8 m und 2 m.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]